divisor theory in finite extension
Theorem.β Let the integral domain , with the quotient field , have the divisor theoryβ , determined (see divisors and exponents) by the exponent (http://planetmath.org/ExponentValuation2) system of .β If is a finite extension, then the exponent system , consisting of the continuations (http://planetmath.org/ContinuationOfExponent) of all exponents in to the field , determines the divisor theory of the integral closure of in .
Corollary.β In the ring of integers of any algebraic number field , there is a divisor theory , determined by the set of all exponent valuations of .
References
- 1 S. Borewicz & I. Safarevic: Zahlentheorie.β BirkhΓ€user Verlag. Basel und Stuttgart (1966).
Title | divisor theory in finite extension |
---|---|
Canonical name | DivisorTheoryInFiniteExtension |
Date of creation | 2013-03-22 17:59:59 |
Last modified on | 2013-03-22 17:59:59 |
Owner | pahio (2872) |
Last modified by | pahio (2872) |
Numerical id | 7 |
Author | pahio (2872) |
Entry type | Theorem |
Classification | msc 13A18 |
Classification | msc 13F05 |
Classification | msc 12J20 |
Classification | msc 13A05 |
Classification | msc 11A51 |
Related topic | FiniteExtensionsOfDedekindDomainsAreDedekind |