generators of inverse ideal


Theorem.  Let R be a commutative ring with non-zero unity and let T be the total ring of fractionsMathworldPlanetmath of R.  If  π”ž=(a1,…,an)  is an invertible fractional idealMathworldPlanetmath (http://planetmath.org/FractionalIdealOfCommutativeRing) of R with β€‰π”žβ’π”Ÿ=R,  then also the inverse ideal π”Ÿ can be generated by n elements of T.

Proof.  The equation  π”žβ’π”Ÿ=(1)  implies the existence of the elements aiβ€² of π”ž and biβ€² of π”Ÿβ€‰ (i=1,…,m) such that  a1′⁒b1β€²+β‹―+am′⁒bmβ€²=1.  Because the ai′’s are in π”ž, they may be expressed as

aiβ€²=βˆ‘j=1nri⁒jaj  (i=1,…,m),

where the ri⁒j’s are some elements of R.  Now the unity acquires the form

1=βˆ‘i=1mai′⁒biβ€²=βˆ‘i=1mβˆ‘j=1nri⁒j⁒aj⁒biβ€²=βˆ‘j=1najβ’βˆ‘i=1mri⁒j⁒biβ€²=βˆ‘j=1naj⁒bj,

in which

bj=βˆ‘i=1mri⁒jbiβ€²βˆˆRπ”Ÿ=π”Ÿβ€ƒβ€ƒ(j=1,…,n).

Thus an arbitrary element b of the π”Ÿ satisfies the condition

b=bβ‹…1=βˆ‘j=1n(aj⁒b)⁒bj∈R⁒b1+β‹―+R⁒bn=(b1,…,bn).

Consequently,  π”ŸβŠ†(b1,…,bn).  Since the inverseMathworldPlanetmathPlanetmathPlanetmath inclusion is apparent, we have the equality

π”ž-1=π”Ÿ=(b1,…,bn).
Title generators of inverse ideal
Canonical name GeneratorsOfInverseIdeal
Date of creation 2015-05-06 14:52:30
Last modified on 2015-05-06 14:52:30
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 18
Author pahio (2872)
Entry type Theorem
Classification msc 13A15
Related topic FractionalIdealOfCommutativeRing
Related topic IdealGeneratedByASet
Related topic PruferRing