Hermitian dot product (finite fields)


Let q be an http://planetmath.org/node/4703even http://planetmath.org/node/438prime power (in particular, q is a square) and 𝔽q the finite fieldMathworldPlanetmath with q elements. Then 𝔽q is a subfieldMathworldPlanetmath of 𝔽q. The k¯ of an element k𝔽q is defined by the q-th power Frobenius mapPlanetmathPlanetmath

k¯:=Frobq(k)=kq.

The has properties similar to the complex conjugateMathworldPlanetmath. Let k1,k2𝔽q, then

  1. 1.

    k1+k2¯=k1¯+k2¯,

  2. 2.

    k1k2¯=k1¯k2¯,

  3. 3.

    k1¯¯=k1.

Properties 1 and 2 hold because the Frobenius map is a http://planetmath.org/node/1011homomorphismPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath. Property 3 holds because of the identityPlanetmathPlanetmath kq=k which holds for any k in any finite field with q elements. See also http://planetmath.org/node/2893finite field.

Now let 𝔽qn be the n-dimensional vector spaceMathworldPlanetmath over 𝔽q, then the Hermitian dot product of two vectors (u1,,un),(v1,,vn)𝔽qn is

(u1,,un)(v1,,vn):=i=1nuivi¯.

Again, this kind of Hermitian dot product has properties similar to Hermitian inner productsMathworldPlanetmath on complex vector spaces. Let k1,k2𝔽q and v1,v2,v,,w𝔽qn, then

  1. 1.

    (k1v1+k2v2)w=k1(v1w)+k2(v2w) (linearity)

  2. 2.

    vw=wv¯

  3. 3.

    vv𝔽q

Property 3 follows since q+1 divides q-1 (see http://planetmath.org/node/2893finite field).

Title Hermitian dot product (finite fields)
Canonical name HermitianDotProductfiniteFields
Date of creation 2013-03-22 15:13:26
Last modified on 2013-03-22 15:13:26
Owner GrafZahl (9234)
Last modified by GrafZahl (9234)
Numerical id 7
Author GrafZahl (9234)
Entry type Definition
Classification msc 11E39
Classification msc 12E20
Synonym Hermitian dot product
Related topic FiniteField
Defines conjugatePlanetmathPlanetmathPlanetmath (finite fields)
Defines conjugationMathworldPlanetmath (finite fields)