Hermitian dot product (finite fields)
Let q be an http://planetmath.org/node/4703even http://planetmath.org/node/438prime power (in particular, q is a square) and
𝔽q the finite field with q elements. Then
𝔽√q is a subfield
of 𝔽q. The
ˉk of an element k∈𝔽q is defined by
the
√q-th power Frobenius map
ˉk:=Frob√q(k)=k√q. |
The has properties similar to the complex conjugate. Let
k1,k2∈𝔽q, then
-
1.
¯k1+k2=¯k1+¯k2,
-
2.
¯k1k2=¯k1¯k2,
-
3.
¯¯k1=k1.
Properties 1 and 2 hold because the Frobenius map is a
http://planetmath.org/node/1011homomorphism.
Property 3 holds because of the identity
kq=k which
holds for any k in any finite field with q elements.
See also http://planetmath.org/node/2893finite field.
Now let 𝔽nq be the n-dimensional vector space over
𝔽q, then the Hermitian dot product of two vectors
(u1,…,un),(v1,…,vn)∈𝔽nq is
(u1,…,un)⋅(v1,…,vn):=n∑i=1ui¯vi. |
Again, this kind of Hermitian dot product has properties similar to
Hermitian inner products on complex vector spaces. Let
k1,k2∈𝔽q and v1,v2,v,,w∈𝔽nq, then
-
1.
(k1v1+k2v2)⋅w=k1(v1⋅w)+k2(v2⋅w) (linearity)
-
2.
v⋅w=¯w⋅v
-
3.
v⋅v∈𝔽√q
Property 3 follows since √q+1 divides q-1 (see http://planetmath.org/node/2893finite field).
Title | Hermitian dot product (finite fields) |
---|---|
Canonical name | HermitianDotProductfiniteFields |
Date of creation | 2013-03-22 15:13:26 |
Last modified on | 2013-03-22 15:13:26 |
Owner | GrafZahl (9234) |
Last modified by | GrafZahl (9234) |
Numerical id | 7 |
Author | GrafZahl (9234) |
Entry type | Definition |
Classification | msc 11E39 |
Classification | msc 12E20 |
Synonym | Hermitian dot product |
Related topic | FiniteField |
Defines | conjugate |
Defines | conjugation![]() |