isepiphanic inequality
The classical isepiphanic inequality
concerns the volume and the area of any solid in . It asserts that the ball has the greatest volume among the solids having a given area.
For a ball with radius , we have
whence it follows the equality
Cf. the isoperimetric inequality and the isoperimetric problem.
References
- 1 Patrik Nordbeck: Isoperimetriska problemet eller Varför ser man så få fyrkantiga träd? Examensarbete. Lund University (1995).
Title | isepiphanic inequality |
---|---|
Canonical name | IsepiphanicInequality |
Date of creation | 2013-03-22 19:19:08 |
Last modified on | 2013-03-22 19:19:08 |
Owner | pahio (2872) |
Last modified by | pahio (2872) |
Numerical id | 6 |
Author | pahio (2872) |
Entry type | Theorem |
Classification | msc 51M25 |
Classification | msc 51M16 |