isepiphanic inequality
The classical isepiphanic inequality
concerns the volume and the area of any solid in . It asserts that the ball has the greatest volume among the solids having a given area.
For a ball with radius , we have
whence it follows the equality
Cf. the isoperimetric inequality![]()
and the isoperimetric problem
![]()
.
References
- 1 Patrik Nordbeck: Isoperimetriska problemet eller Varför ser man så få fyrkantiga träd? Examensarbete. Lund University (1995).
| Title | isepiphanic inequality |
|---|---|
| Canonical name | IsepiphanicInequality |
| Date of creation | 2013-03-22 19:19:08 |
| Last modified on | 2013-03-22 19:19:08 |
| Owner | pahio (2872) |
| Last modified by | pahio (2872) |
| Numerical id | 6 |
| Author | pahio (2872) |
| Entry type | Theorem |
| Classification | msc 51M25 |
| Classification | msc 51M16 |