Kaprekar constant


The Kaprekar constant Kk in a given base b is a k-digit number K such that subjecting any other k-digit number n (except the repunitMathworldPlanetmath Rk and numbers with k-1 repeated digits) to the following process:

1. Arrange the digits of n in ascending orderPlanetmathPlanetmath, forming the k-digit number a, and then in descending order, forming the k-digit number b.

2. If a>b, calculate a-b=c; otherwise b-a=c.

3. Goto step 1 using c instead of n.

eventuallyMathworldPlanetmath gives K. (This process is sometimes called the Kaprekar routine).

For b=10, the Kaprekar constant for k=4 is 6174. Using n=1729, we find that 9721 - 1279 gives 8442. Then 8442 - 2448 = 5994. Then 9954 - 4599 gives 5355. Then 5553 - 3555 gives 1998. Then 9981 - 1899 gives 8082. Then 8820 - 288 gives 8532. Then 8532 - 2538 finally gives 6174. (Some numbers take longer than others). K2 and K7 don’t exist for b=10.

Title Kaprekar constant
Canonical name KaprekarConstant
Date of creation 2013-03-22 16:16:30
Last modified on 2013-03-22 16:16:30
Owner PrimeFan (13766)
Last modified by PrimeFan (13766)
Numerical id 5
Author PrimeFan (13766)
Entry type Definition
Classification msc 11A63
Synonym Kaprekar’s constant
Defines Kaprekar routine