class numbers of imaginary quadratic fields


We tabulate the ideal class numbers (http://planetmath.org/ClassNumber) h of first imaginary quadratic number fields (d).  The table all the nine cases where the class numberMathworldPlanetmath is 1.

d h d h d h d h
-1 1! -47 5 -97 4 -146 16
-2 1! -51 2 -101 14 -149 14
-3 1! -53 6 -102 4 -151 7
-5 2 -55 4 -103 5 -154 8
-6 2 -57 4 -105 8 -155 4
-7 1! -58 2 -106 6 -157 6
-10 2 -59 3 -107 3 -158 8
-11 1! -61 6 -109 6 -159 10
-13 2 -62 8 -110 12 -161 16
-14 4 -65 8 -111 8 -163 1!
-15 2 -66 8 -113 8 -165 8
-17 4 -67 1! -114 8 -166 10
-19 1! -69 8 -115 2 -167 11
-21 4 -70 4 -118 6 -170 12
-22 2 -71 7 -119 10 -173 14
-23 3 -73 4 -122 10 -174 12
-26 6 -74 10 -123 2 -177 4
-29 6 -77 8 -127 5 -178 8
-30 4 -78 4 -129 12 -179 5
-31 3 -79 5 -130 4 -181 10
-33 4 -82 4 -131 5 -182 12
-34 4 -83 3 -133 4 -183 8
-35 2 -85 4 -134 14 -185 16
-37 2 -86 10 -137 8 -186 12
-38 6 -87 6 -138 8 -187 2
-39 4 -89 12 -139 3 -190 4
-41 8 -91 2 -141 8 -191 13
-42 4 -93 4 -142 4 -193 4
-43 1! -94 8 -143 10 -194 20
-46 4 -95 8 -145 8 -195 4

The class numbers of (d) for the squarefreeMathworldPlanetmath d’s form Sloane’s http://www.research.att.com/ njas/sequences/?q=A000924&sort=0&fmt=0&language=english&go=Searchsequence A000924.

References

  • 1 S. Borewicz & I. Safarevic: Zahlentheorie.  Birkhäuser Verlag. Basel und Stuttgart (1966).
Title class numbers of imaginary quadratic fields
Canonical name ClassNumbersOfImaginaryQuadraticFields
Date of creation 2013-03-22 18:31:20
Last modified on 2013-03-22 18:31:20
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 10
Author pahio (2872)
Entry type Data Structure
Classification msc 11R11
Classification msc 11R04
Related topic LemmaForImaginaryQuadraticFields
Related topic QuadraticImaginaryEuclideanNumberFields