continuity of natural power
Theorem.
Let be arbitrary positive integer. The power function from to (or to ) is continuous at each point .
Proof. Let be any positive number. Denote and . Then identically
Taking the absolute value![]()
and using the triangle inequality
![]()
![]()
give
But since and also , so each summand in the parentheses is at most equal to , and since there are summands, the sum is at most equal to . Thus we get
We may choose ; this implies
The right hand side of this inequality![]()
is less than as soon as we still require
This means that the power function is continuous at the point .
Note. Another way to prove the theorem is to use induction on and the rule 2 in limit rules of functions.
| Title | continuity of natural power |
|---|---|
| Canonical name | ContinuityOfNaturalPower |
| Date of creation | 2013-03-22 15:39:25 |
| Last modified on | 2013-03-22 15:39:25 |
| Owner | pahio (2872) |
| Last modified by | pahio (2872) |
| Numerical id | 7 |
| Author | pahio (2872) |
| Entry type | Theorem |
| Classification | msc 26C05 |
| Classification | msc 26A15 |
| Related topic | Exponentiation2 |