descending series
Let be a group.
A descending series of is a family of subgroups of , where is an ordinal, such that and , and for all , and
whenever is a limit ordinal.
Note that this is a generalization of the concept of a subnormal series. Compare also the dual concept of an ascending series.
Given a descending series , the subgroups are called the terms of the series and the quotients (http://planetmath.org/QuotientGroup) are called the factors of the series.
A subgroup of that is a term of some descending series of is called a descendant subgroup of .
A descending series of in which all terms are normal in is called a descending normal series.
Let be a property of groups. A group is said to be hypo- if it has a descending normal series whose factors all have property . So, for example, a hypoabelian group is a group that has a descending normal series with abelian factors. Hypoabelian groups are sometimes called SD-groups; they are precisely the groups that have no non-trivial perfect subgroups, and they are also precisely the groups in which the transfinite derived series eventually reaches .
Title | descending series |
Canonical name | DescendingSeries |
Date of creation | 2013-03-22 16:14:52 |
Last modified on | 2013-03-22 16:14:52 |
Owner | yark (2760) |
Last modified by | yark (2760) |
Numerical id | 7 |
Author | yark (2760) |
Entry type | Definition |
Classification | msc 20E15 |
Classification | msc 20F22 |
Related topic | AscendingSeries |
Related topic | SubnormalSeries |
Related topic | SubnormalSubgroup |
Defines | descending normal series |
Defines | descendant subgroup |
Defines | descendant |
Defines | hypoabelian group |
Defines | hypoabelian |
Defines | SD-group |