xlog2x=O(@\slimits@@@nx2Ω(n))


Within this entry, Ω refers to the number of (nondistinct) prime factorsMathworldPlanetmath functionMathworldPlanetmath (http://planetmath.org/NumberOfNondistinctPrimeFactorsFunction), τ refers to the divisor functionDlmfDlmfMathworldPlanetmath, μ refers to the Möbius function, refers to the floor function, log refers to the natural logarithmMathworldPlanetmathPlanetmath, p refers to a prime, and d, k, , m, and n refer to positive integers.

Theorem.

xlog2x=O(nx2Ω(n))

Proof.
nx2Ω(n) =2kmxm is odd2Ω(2km)
=2kx2Ω(2k)mx2km is odd2Ω(m) since 2Ω is multiplicative
klogxlog22kmx2km is oddτ(m)
klogxlog22kdx2kd is oddx2kd is odd1 by the convolution method
klogxlog22kdx2kd is oddx2k+2d
x4klogxlog2dx2kd is odd1d
x4klogxlog2(1xdx2kd is odd1-1x2k-1t2(dtd is odd1)𝑑t) by summation by partsPlanetmathPlanetmath (http://planetmath.org/AbelsLemma)
x4klogxlog2(1xx2k+2+1x2k1t2t2𝑑t)
x4klogxlog2(12k+2+121x2k1t𝑑t)
x4klogxlog2(12k+2+12log(x2k))
x16klogxlog2(12k+logx-klog2)
x16(12(1-(12)logxlog2+11-12)+logxlogxlog2-log2(logxlog22+logxlog22))
x16logxlog2(logx-12log2(logxlog2+1))
x16logxlog2(logx-12log2(logxlog2+1))
x16logxlog2(logx-12logx-12log2)
x32logxlog2log(x2)

Since, for x sufficiently large, logx=O(log(x2)) and logx=O(logxlog2), it follows that xlog2x=O(nx2Ω(n)). ∎

Title xlog2x=O(@\slimits@@@nx2Ω(n))
Canonical name displaystyleXlog2xOleftsumnleX2Omeganright
Date of creation 2013-03-22 16:09:18
Last modified on 2013-03-22 16:09:18
Owner Wkbj79 (1863)
Last modified by Wkbj79 (1863)
Numerical id 16
Author Wkbj79 (1863)
Entry type Theorem
Classification msc 11N37
Related topic AsymptoticEstimate
Related topic ConvolutionMethod
Related topic DisplaystyleYOmeganOleftFracxlogXy12YRightFor1LeY2