finite quantum group
Definition 0.1.
A finite quantum group is a pair of a finite-dimensional -algebra with a comultiplication such that is a Hopf -algebra.
Note that one obtains the dual Hopf algebra of a commutative, finite quantum group via Fourier transformation of the group’s elements.
References
- 1 Abe, E., Hopf Algebras, Cambridge University Press, 1977.
- 2 Sweedler, M. E., Hopf Algebras, W.A. Benjamin, inc., New York, 1969.
- 3 Kustermans, J., Van Daele, A., C*-algebraic Quantum Groups arising from Algebraic Quantum Groups, Int. J. of Math. 8 (1997), 1067-1139.
- 4 Lance, E.C., An explicit description of the fundamental unitary for , Commun. Math. Phys. 164 (1994), 1-15.
Title | finite quantum group |
Canonical name | FiniteQuantumGroup |
Date of creation | 2013-03-22 18:24:10 |
Last modified on | 2013-03-22 18:24:10 |
Owner | bci1 (20947) |
Last modified by | bci1 (20947) |
Numerical id | 17 |
Author | bci1 (20947) |
Entry type | Definition |
Classification | msc 46L05 |
Classification | msc 81R15 |
Classification | msc 81R50 |
Synonym | quantum group |
Synonym | dual of a finite Hopf algebra |
Related topic | CompactQuantumGroup |
Related topic | HopfAlgebra |
Related topic | GrassmanHopfAlgebrasAndTheirDualCoAlgebras |
Related topic | CompactMatrixQuantumGroup |
Defines | comultiplication in a quantum group |
Defines | dual of a finite Hopf algebra |