fractional integration
The basic idea of ”Riemann-Liouville” type fractional integration comes from the following observation:
Given any integrable function f:ℝ↦ℝ in one variable, we have the following Cauchy Integration Formula:
D-n(f)(x)=∫xtn=0𝑑tn…∫t2t1=0f(t1)𝑑t1=1(n-1)!∫xt=0f(t)(x-t)n-1𝑑t |
when switching the index from integer n to non-integer α gives the ideas of the following definitions:
Definition 1: Left-Hand Riemann-Liouville Integration
IαL(f)(s,t)=1Γ(α)∫tu=sf(u)(t-u)α-1𝑑u=∫tu=sf(u)𝑑gαt(u) |
where
gαt(u)=tα-(t-u)αΓ(α+1) |
Definition 2: Right-Hand Riemann-Liouville Integration
IαR(f)(s,t)=1Γ(α)∫tu=sf(u)(u-s)α-1𝑑u=∫tu=sf(u)𝑑hαt(u) |
where
hαt(u)=sα+(u-s)αΓ(α+1) |
Definition 3: Riesz Potential
IαC(f)(s,t;p)=1Γ(α)∫tu=sf(u)|u-p|α-1𝑑u=∫tu=sf(u)𝑑rαp(u) |
where
rαp(u)=pα+sign(u-p)|u-p|αΓ(α+1) |
,
sign(x)=1 for x>0, sign(x)=0 for x=0, sign(x)=-1 for x<0
and Γ(x) is the gamma function of x
Title | fractional integration |
---|---|
Canonical name | FractionalIntegration |
Date of creation | 2013-03-22 16:17:47 |
Last modified on | 2013-03-22 16:17:47 |
Owner | rspuzio (6075) |
Last modified by | rspuzio (6075) |
Numerical id | 17 |
Author | rspuzio (6075) |
Entry type | Definition |
Classification | msc 26A33 |
Synonym | fractional integral![]() ![]() ![]() |