harmonic division
-
•
If the point is on the line segment

and , then divides internally in the ratio .
-
•
If the point is on the extension of line segment and , then divides externally in the ratio .
-
•
If is the same in both cases, then the points and divide harmonically in the ratio .
Theorem 1. The bisectors![]()
of an angle of a triangle and its linear pair divide the opposite side of the triangle harmonically in the ratio of the adjacent sides
![]()
.
Theorem 2. If the points and divide the line segment harmonically in the ratio , then the circle with diameter![]()
the segment (the so-called Apollonius’ circle) is the locus of such points whose distances
![]()
from and have the ratio .
The latter theorem may be proved by using analytic geometry![]()
.
| Title | harmonic division |
|---|---|
| Canonical name | HarmonicDivision |
| Date of creation | 2013-03-22 17:34:29 |
| Last modified on | 2013-03-22 17:34:29 |
| Owner | pahio (2872) |
| Last modified by | pahio (2872) |
| Numerical id | 7 |
| Author | pahio (2872) |
| Entry type | Definition |
| Classification | msc 51N20 |
| Classification | msc 51M04 |
| Related topic | BisectorsTheorem |
| Related topic | ApolloniusCircle |
| Defines | harmonically |
| Defines | divide harmonically |