Hilbert’s Nullstellensatz
Let K be an algebraically closed field, and let I be an ideal in K[x1,…,xn], the polynomial ring in n indeterminates.
Define V(I), the zero set of I, by
V(I)={(a1,…,an)∈Kn∣f(a1,…,an)=0 for all f∈I} |
Weak Nullstellensatz:
If V(I)=∅, then I=K[x1,…,xn]. In other words, the zero set of any proper ideal of K[x1,…,xn] is nonempty.
Hilbert’s (Strong) Nullstellensatz:
Suppose f∈K[x1,…,xn] satisfies f(a1,…,an)=0 for every (a1,…,an)∈V(I). Then fr∈I for some integer r>0.
In the of algebraic geometry, the latter result is equivalent to the statement that Rad(I)=I(V(I)), that is, the radical
of I is equal to the ideal of V(I).
Title | Hilbert’s Nullstellensatz |
Canonical name | HilbertsNullstellensatz |
Date of creation | 2013-03-22 13:03:59 |
Last modified on | 2013-03-22 13:03:59 |
Owner | rmilson (146) |
Last modified by | rmilson (146) |
Numerical id | 8 |
Author | rmilson (146) |
Entry type | Theorem |
Classification | msc 13A10 |
Synonym | Nullstellensatz |
Related topic | RadicalOfAnIdeal |
Related topic | AlgebraicSetsAndPolynomialIdeals |
Defines | zero set |
Defines | Hilbert’s Nullstellensatz |
Defines | weak Nullstellensatz |