Laplace transform of periodic functions


Let f(t) be periodic with the positive period (http://planetmath.org/PeriodicFunctions) p.  Denote by H(t) the Heaviside step function.  If now

g(t):=f(t)H(t)-f(t-p)H(t-p),

then it follows

g(t)={f(t)for  0<t<p,0   otherwise. (1)

By the parent entry (http://planetmath.org/DelayTheorem), the Laplace transformMathworldPlanetmath of g is

G(s)=F(s)-e-psF(s),

whence

F(s)=G(s)1-e-ps=11-e-ps0e-stg(t)𝑑t=11-e-ps0pe-stf(t)𝑑t.

Thus we have the rule

{f(t)}=11-e-ps0pe-stf(t)𝑑t  (period p). (2)

On the contrary, if f(t) is antiperiodic with positive antiperiod p, then the function

g(t):=f(t)H(t)+f(t-p)H(t-p)

also has the property (1).  Analogically with the preceding procedure, one may derive the rule

{f(t)}=11+e-ps0pe-stf(t)𝑑t  (antiperiod p). (3)
Title Laplace transform of periodic functions
Canonical name LaplaceTransformOfPeriodicFunctions
Date of creation 2013-03-22 18:58:24
Last modified on 2013-03-22 18:58:24
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 5
Author pahio (2872)
Entry type Derivation
Classification msc 44A10
Related topic RectificationOfAntiperiodicFunction
Related topic TableOfLaplaceTransforms