Lindelöf space
Definition
A topological space is said to be Lindelöf if every open cover has a countable subcover.
Notes
A second-countable space is Lindelöf. A compact space is Lindelöf.
A regular (http://planetmath.org/T3Space) Lindelöf space is http://planetmath.org/node/1530normal.
sets (http://planetmath.org/F_sigmaSet) in Lindelöf spaces are Lindelöf. Continuous images of Lindelöf spaces are Lindelöf.
A Lindelöf space is compact if and only if it is countably compact.
Title | Lindelöf space |
Canonical name | LindelofSpace |
Date of creation | 2013-03-22 12:06:34 |
Last modified on | 2013-03-22 12:06:34 |
Owner | yark (2760) |
Last modified by | yark (2760) |
Numerical id | 11 |
Author | yark (2760) |
Entry type | Definition |
Classification | msc 54D20 |
Related topic | SecondCountable |
Related topic | Separable |
Related topic | Compact |
Related topic | LindelofTheorem |
Related topic | CompactMetricSpacesAreSecondCountable |
Related topic | ErnstLindelof |
Defines | Lindelöf |
Defines | Lindelöf property |