locally Euclidean
A locally Euclidean space is a topological space![]()
that locally
“looks” like .
This makes it possible to talk about
coordinate axes around . It also gives some topological structure
to the space: for example, since is locally compact, so is .
However, the restriction does not induce any geometry
![]()
onto .
Definition
Suppose is a topological space. Then is
called locally Euclidean if for each there is a neighbourhood
, a , and
a homeomorphism![]()
. Then the triple
is called a chart for .
Here, is the set of real numbers, and for we define as set with a single point equipped with the discrete topology.
Local dimension
Suppose is a locally Euclidean space with . Further,
suppose is a chart of such that .
Then we define the local of at is .
This is well defined, that is, the local dimension![]()
does not
depend on the chosen chart. If
is another chart with , then
is a homeomorphism between
and . By Brouwer’s theorem
for the invariance of dimension (which is nontrivial),
it follows that .
If the local dimension is constant, say , we say that the dimension of is , and write .
Examples
-
•
Any set with the discrete topology, is a locally Euclidean of dimension
-
•
Any open subset of is locally Euclidean.
-
•
Any manifold is locally Euclidean. For example, using a stereographic projection, one can show that the sphere is locally Euclidean.
- •
Notes
The concept locally Euclidean has a different meaning in the setting of Riemannian manifolds.
References
- 1 L. Conlon, Differentiable Manifolds: A first course, Birkhäuser, 1993.
| Title | locally Euclidean |
|---|---|
| Canonical name | LocallyEuclidean |
| Date of creation | 2013-03-22 14:14:49 |
| Last modified on | 2013-03-22 14:14:49 |
| Owner | matte (1858) |
| Last modified by | matte (1858) |
| Numerical id | 14 |
| Author | matte (1858) |
| Entry type | Definition |
| Classification | msc 53-00 |
| Related topic | Manifold |
| Related topic | LocallyHomeomorphic |
| Related topic | EmptyProduct |
| Defines | locally Euclidean space |
| Defines | chart |