## You are here

Homelogarithmic proof of quotient rule

## Primary tabs

# logarithmic proof of quotient rule

Following is a proof of the quotient rule using the natural logarithm, the chain rule, and implicit differentiation. Note that circular reasoning does not occur, as each of the concepts used can be proven independently of the quotient rule.

###### Proof.

Let $f$ and $g$ be differentiable functions and $\displaystyle y=\frac{f(x)}{g(x)}$. Then $\ln y=\ln f(x)-\ln g(x)$. Thus, $\displaystyle\frac{1}{y}\cdot\frac{dy}{dx}=\frac{f^{{\prime}}(x)}{f(x)}-\frac{% g^{{\prime}}(x)}{g(x)}$. Therefore,

$\begin{array}[]{rl}\displaystyle\frac{dy}{dx}&\displaystyle=y\left(\frac{f^{{% \prime}}(x)}{f(x)}-\frac{g^{{\prime}}(x)}{g(x)}\right)\\ &\\ &\displaystyle=\frac{f(x)}{g(x)}\left(\frac{f^{{\prime}}(x)}{f(x)}-\frac{g^{{% \prime}}(x)}{g(x)}\right)\\ &\\ &\displaystyle=\frac{f^{{\prime}}(x)}{g(x)}-\frac{f(x)g^{{\prime}}(x)}{(g(x))^% {2}}\\ &\\ &\displaystyle=\frac{g(x)f^{{\prime}}(x)-f(x)g^{{\prime}}(x)}{(g(x))^{2}}.\end% {array}$

∎

Once students are familiar with the natural logarithm, the chain rule, and implicit differentiation, they typically have no problem following this proof of the quotient rule. Actually, with some prompting, they can produce a proof of the quotient rule similar to this one. This exercise is a great way for students to review many concepts from calculus.

## Mathematics Subject Classification

26A06*no label found*97D40

*no label found*

- Forums
- Planetary Bugs
- HS/Secondary
- University/Tertiary
- Graduate/Advanced
- Industry/Practice
- Research Topics
- LaTeX help
- Math Comptetitions
- Math History
- Math Humor
- PlanetMath Comments
- PlanetMath System Updates and News
- PlanetMath help
- PlanetMath.ORG
- Strategic Communications Development
- The Math Pub
- Testing messages (ignore)

- Other useful stuff

## Recent Activity

new question: Prove a formula is part of the Gentzen System by LadyAnne

Mar 30

new question: A problem about Euler's totient function by mbhatia

new problem: Problem: Show that phi(a^n-1), (where phi is the Euler totient function), is divisible by n for any natural number n and any natural number a >1. by mbhatia

new problem: MSC browser just displays "No articles found. Up to ." by jaimeglz

Mar 26

new correction: Misspelled name by DavidSteinsaltz

Mar 21

new correction: underline-typo by Filipe

Mar 19

new correction: cocycle pro cocyle by pahio

Mar 7

new image: plot W(t) = P(waiting time <= t) (2nd attempt) by robert_dodier

new image: expected waiting time by robert_dodier

new image: plot W(t) = P(waiting time <= t) by robert_dodier