polygon


A polygonMathworldPlanetmathPlanetmath is a simple (http://planetmath.org/SimpleCurve), closed path that lies on a plane and is composed entirely of line segmentsMathworldPlanetmath. In other words, if someone were to walk on a polygon, then the person would end up back where he started; moreover, if a person walks on a polygon so that he travels exactly once around the polygon, then the path (http://planetmath.org/Path) never crosses itself, and the person is either walking along a line or turning.

Below are some examples of polygons:

A side of a polygon is a line segment on the polygon that is of maximal length. In other words, any line segment that contains a side of a polygon and has a greater length than that side is not entirely on that polygon. A vertex of a polygon is an endpointMathworldPlanetmath of a side of the polygon. Note that each vertex of a polygon is simultaneously the endpoint of exactly two adjacent sidesMathworldPlanetmathPlanetmath of the polygon.

A polygon with n sides is called an n-gon. For small n, there are more traditional names:

number of sides name of polygon
3 triangleMathworldPlanetmath
4 quadrilateralMathworldPlanetmath
5 pentagonMathworldPlanetmath
6 hexagonMathworldPlanetmath
7 heptagon
8 octagon
10 decagon

In spherical geometryMathworldPlanetmath, polygons with only two sides exist. They are called biangles.

The perimeterPlanetmathPlanetmath of a polygon is the sum of the lengths of its sides.

An interior angleMathworldPlanetmath of a polygon is the measure of an angle formed by two adjacent sides such that the angle is measured with respect to the interior of the polygon. For each polygon in the picture below, the interior angles are marked in blue:

Note that the measure (http://planetmath.org/AngleMeasure) of any interior angle of a polygon is strictly between 0 and 360 and is not equal to 180.

We have the following criterion for a polygon to be convex:

Theorem.

A polygon is convex if and only if each of its interior angles has a measure that is strictly less than 180.

The angle sum of a polygon is the sum of the measures of its interior angles. In Euclidean geometryMathworldPlanetmath, the angle sum of an n-gon is exactly 180(n-2).

An exterior angle of a polygon is any angle that forms a linear pair with an interior angle of a polygon. In the picture below, all exterior angles of the triangle are marked in blue:

For a more rigorous treatment of polygons, see this entry (http://planetmath.org/Polygon).

Title polygon
Canonical name Polygon1
Date of creation 2013-03-22 17:35:35
Last modified on 2013-03-22 17:35:35
Owner Wkbj79 (1863)
Last modified by Wkbj79 (1863)
Numerical id 20
Author Wkbj79 (1863)
Entry type Definition
Classification msc 51-00
Related topic Polygon
Related topic BasicLength
Related topic Diagonal
Related topic RegularPolygon
Related topic Semiperimeter
Related topic EquilateralPolygon
Related topic EquiangularPolygon
Defines side
Defines vertex
Defines n-gon
Defines n-gon
Defines perimeter
Defines interior angle
Defines angle sum
Defines exterior angle