position vector
In the space , the vector
directed from the origin to a point is the position vector of this point. When the point is , a vector field and its
a scalar .
If is a vector, a vector function and is a twice differentiable function, then the formulae
-
•
-
•
-
•
-
•
-
•
-
•
-
•
hold.
References
- 1 K. Väisälä: Vektorianalyysi. Werner Söderström Osakeyhtiö, Helsinki (1961).
| Title | position vector |
|---|---|
| Canonical name | PositionVector |
| Date of creation | 2013-03-22 15:25:15 |
| Last modified on | 2013-03-22 15:25:15 |
| Owner | pahio (2872) |
| Last modified by | pahio (2872) |
| Numerical id | 18 |
| Author | pahio (2872) |
| Entry type | Definition |
| Classification | msc 15A72 |
| Synonym | radius vector |
| Related topic | ExampleOfCurvatureSpaceCurve |
| Related topic | DyadProduct |
| Related topic | TiltCurve |