position vector
In the space , the vector
directed from the origin to a point is the position vector of this point. When the point is , a vector field and its
a scalar .
If is a vector, a vector function and is a twice differentiable function, then the formulae
-
•
-
•
-
•
-
•
-
•
-
•
-
•
hold.
References
- 1 K. Väisälä: Vektorianalyysi. Werner Söderström Osakeyhtiö, Helsinki (1961).
Title | position vector |
---|---|
Canonical name | PositionVector |
Date of creation | 2013-03-22 15:25:15 |
Last modified on | 2013-03-22 15:25:15 |
Owner | pahio (2872) |
Last modified by | pahio (2872) |
Numerical id | 18 |
Author | pahio (2872) |
Entry type | Definition |
Classification | msc 15A72 |
Synonym | radius vector |
Related topic | ExampleOfCurvatureSpaceCurve |
Related topic | DyadProduct |
Related topic | TiltCurve |