position vector


In the space 3, the vector

r:=(x,y,z)=xi+yj+zk

directed from the origin to a point  (x,y,z)  is the position vector of this point. When the point is , r a vector field and its

r:=x2+y2+z2

a scalar .

The

  • r= 3

  • ×r=0

  • r=rr=r 0

  • 1r=-rr3=-r 0r2

  • 21r= 0

are valid, where r 0 is the unit vectorMathworldPlanetmath having the direction of r.

If  c  is a vector,  U:33  a vector function and  f:  is a twice differentiable function, then the formulae

  • (cr)=c

  • (c×r)= 0

  • (U)r=U

  • (U×)r= 0

  • (U×)×r=-2U

  • f(r)=f(r)r 0

  • 2f(r)=f′′(r)+2rf(r)

hold.

References

  • 1 K. Väisälä: Vektorianalyysi.  Werner Söderström Osakeyhtiö, Helsinki (1961).
Title position vector
Canonical name PositionVector
Date of creation 2013-03-22 15:25:15
Last modified on 2013-03-22 15:25:15
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 18
Author pahio (2872)
Entry type Definition
Classification msc 15A72
Synonym radius vector
Related topic ExampleOfCurvatureSpaceCurve
Related topic DyadProduct
Related topic TiltCurve