proof of closed curve theorem
Let
Hence we have
where and are the differential forms![]()
Notice that by Cauchy-Riemann equations![]()
and are closed differential forms. Hence by the lemma on closed differential forms on a simply connected domain we get
and hence
| Title | proof of closed curve theorem |
|---|---|
| Canonical name | ProofOfClosedCurveTheorem |
| Date of creation | 2013-03-22 13:33:34 |
| Last modified on | 2013-03-22 13:33:34 |
| Owner | paolini (1187) |
| Last modified by | paolini (1187) |
| Numerical id | 6 |
| Author | paolini (1187) |
| Entry type | Proof |
| Classification | msc 30E20 |