proof of generalized Leibniz rule


The generalized Leibniz rulePlanetmathPlanetmath can be derived from the plain Leibniz rule by inductionMathworldPlanetmath on r.

If r=2, the generalized Leibniz rule reduces to the plain Leibniz rule. This will be the starting point for the induction. To completePlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath the induction, assume that the generalized Leibniz rule holds for a certain value of r; we shall now show that it holds for r+1.

Write i=1r+1fi(t)=(fr+1(t))(i=1r+1fi(t)). Applying the plain Leibniz rule,

dndtn(fr+1(t))(i=1r+1fi(t))=nr+1=0n(nnr+1)(dnr+1dnnr+1fr+1(t))(dn-nr+1dnn-nr+1i=1r+1fi(t))

By the generalized Leibniz rule for r (assumed to be true as the induction hypothesis), this equals

nr+1=0nn1++nr=n-nr+1(n-nr+1n1,n2,nr)(nnr+1)(dnr+1dnnr+1fr+1(t))(i=1rdnidtnifi(t))

Note that

(n-nr+1n1,n2,nr)(nnr+1)=(n-nr+1n1,n2,nr,nr+1)

This is an immediate consequence of the expression for multinomial coefficientsMathworldPlanetmath as quotients of factorialsMathworldPlanetmath. Using this identity, the quantity can be written as

n1++nr+nr+1=n(n-nr+1n1,n2,nr,nr+1)i=1r+1dnidtnifi(t)

which is the generalized Leibniz rule for the case of r+1.

Title proof of generalized Leibniz rule
Canonical name ProofOfGeneralizedLeibnizRule
Date of creation 2013-03-22 14:34:14
Last modified on 2013-03-22 14:34:14
Owner rspuzio (6075)
Last modified by rspuzio (6075)
Numerical id 7
Author rspuzio (6075)
Entry type Proof
Classification msc 26A06