# Cauchy-Schwarz inequality

Let $V$ be a vector space  where an inner product  $\langle,\rangle$ has been defined. Such spaces can be given also a norm by defining

 $\|x\|=\sqrt{\langle x,x\rangle}.$

Then in such a space the Cauchy-Schwarz inequality holds:

 $|\langle v,w\rangle|\leq\|v\|\|w\|$

for any $v,w\in V$. That is, the modulus (since it might as well be a complex number   ) of the inner product for two given vectors is less or equal than the product of their norms. Equality happens if and only if the two vectors are linearly dependent.

A very special case is when $V=\mathbbmss{R}^{n}$ and the inner product is the dot product  defined as $\langle v,w\rangle=v^{t}w$ and usually denoted as $v\cdot w$ and the resulting norm is the Euclidean norm  .

If $\mathbf{x}=(x_{1},x_{2},\ldots,x_{n})$ and $\mathbf{y}=(y_{1},y_{2},\ldots,y_{n})$ the Cauchy-Schwarz inequality becomes

 $|\mathbf{x}\cdot\mathbf{y}|=|x_{1}y_{1}+x_{2}y_{2}+\cdots+x_{n}y_{n}|\leq\sqrt% {x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}\sqrt{y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{% 2}}=\|\mathbf{x}\|\|\mathbf{y}\|,$

which implies

 $(x_{1}y_{1}+x_{2}y_{2}+\cdots+x_{n}y_{n})^{2}\leq\left(x_{1}^{2}+x_{2}^{2}+% \cdots+x_{n}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2}\right)$

Notice that in this case inequality  holds even if the modulus on the middle term (which is a real number) is not used.

Cauchy-Schwarz inequality is also a special case of Hölder inequality. The inequality arises in lot of fields, so it is known under several other names as Bunyakovsky inequality or Kantorovich inequality. Another form that arises often is Cauchy-Schwartz inequality but this is a misspelling since the inequality is named after http://www-groups.dcs.st-and.ac.uk/ history/Mathematicians/Schwarz.htmlHermann Amandus Schwarz (1843–1921).

 $\displaystyle\|\mathbf{x}+\mathbf{y}\|\leq\|\mathbf{x}\|+\|\mathbf{y}\|$ $\displaystyle\qquad\text{triangle inequality}$ $\displaystyle|\mathbf{x}\cdot\mathbf{y}|\leq\|\mathbf{x}\|\cdot\|\mathbf{y}\|$ $\displaystyle\qquad\text{CS inequality}$
 Title Cauchy-Schwarz inequality Canonical name CauchySchwarzInequality Date of creation 2013-03-22 12:14:46 Last modified on 2013-03-22 12:14:46 Owner drini (3) Last modified by drini (3) Numerical id 20 Author drini (3) Entry type Theorem Classification msc 15A63 Synonym Kantorovich inequality Synonym Bunyakovsky inequality Synonym Schwarz inequality Synonym Cauchy inequality Synonym CBS inequality Related topic InnerProduct Related topic InnerProductSpace Related topic DotProduct Related topic NormedVectorSpace Related topic VectorNorm Related topic CauchySchwartzInequality Related topic HolderInequality Related topic CauchySchwarzInequality Related topic VectorPnorm Defines Cauchy-Schwartz inequality