# equivariant

Let $G$ be a group, and $X$ and $Y$ left (resp. right) homogeneous spaces^{} of $G$. Then a map $f:X\to Y$ is called equivariant if $g(f(x))=f(gx)$ (resp. $(f(x))g=f(xg)$) for all $g\in G$.

Title | equivariant |
---|---|

Canonical name | Equivariant |

Date of creation | 2013-03-22 13:56:45 |

Last modified on | 2013-03-22 13:56:45 |

Owner | bwebste (988) |

Last modified by | bwebste (988) |

Numerical id | 4 |

Author | bwebste (988) |

Entry type | Definition |

Classification | msc 20A05 |