# ramification of archimedean places

###### Definition 1.

1. 1.

An archimedean place of $K$ is either a real embedding $\phi\colon K\to\mathbb{R}$ or a pair of complex-conjugate embeddings $(\psi,\overline{\psi})$, with $\overline{\psi}\neq\psi$ and $\psi\colon K\to\mathbb{C}$. The archimedean places are sometimes called the infinite places (cf. place of field).

2. 2.

The non-archimedean places of $K$$\mathcal{O}_{K}$$K$)). The non-archimedean places are sometimes called the finite places.

Notice that any archimedean place $\phi\colon K\to\mathbb{C}$ can be extended to an embedding $\hat{\phi}\colon\overline{\mathbb{Q}}\to\mathbb{C}$, where $\overline{\mathbb{Q}}$ is a fixed algebraic closure  of $\mathbb{Q}$ (in order to prove this, one uses the fact that $\mathbb{C}$ is algebraically closed and also Zorn’s Lemma). See also this entry (http://planetmath.org/PlaceAsExtensionOfHomomorphism). In particular, if $F$ is a finite extension  of $K$ then $\phi$ can be extended to an archimidean place $\hat{\phi}\colon F\to\mathbb{C}$ of $F$.

Next, we define the decomposition and inertia group associated to archimedean places. For the case of non-archimedean places (i.e. prime ideals) see the entries decomposition group and ramification.

Let $F/K$ be a finite Galois extension  of number fields and let $\phi$ be a (real or a pair of complex) archimedean place of $K$. Let $\phi_{1}$ and $\phi_{2}$ be two archimedean places of $F$ which extend $\phi$. Notice that, since $F/K$ is Galois, the image of $\phi_{1}$ and $\phi_{2}$ are equal, in other words:

 $\phi_{1}(F)=\phi_{2}(F)\subset\mathbb{C}.$

Hence, the composition $\phi_{1}^{-1}\circ\phi_{2}$ is an automorphism    of $F$ (here $\phi_{1}^{-1}$ denotes the inverse map of $\phi_{1}$, restricted to $\phi_{1}(F)$). Thus, $\phi_{1}^{-1}\circ\phi_{2}=\sigma\in\operatorname{Gal}(F/K)$ and

 $\phi_{2}=\phi_{1}\circ\sigma$

so $\phi_{1}$ and $\phi_{2}$ differ by an element of the Galois group  . Similarly, if $(\psi_{1},\overline{\psi_{1}})$ and $(\psi_{2},\overline{\psi_{2}})$ are complex embeddings which extend $\phi$, then there is $\sigma\in\operatorname{Gal}(F/K)$ such that

 $(\psi_{2},\overline{\psi_{2}})=(\psi_{1},\overline{\psi_{1}})\circ\sigma$

meaning that either $\psi_{2}=\psi_{1}\circ\sigma$ (and thus $\overline{\psi_{2}}=\overline{\psi_{1}}\circ\sigma$) or $\overline{\psi_{2}}=\psi_{1}\circ\sigma$ (and thus $\psi_{2}=\overline{\psi_{1}}\circ\sigma$). We are ready now to make the definitions.

###### Definition 2.

Let $F/K$ be a Galois extension of number fields and let $w$ be an archimedean place of $F$ lying above a place $v$ of $K$. The decomposition and inertia subgroups   for the pair $w|v$ are equal and are defined by:

 $D(w|v)=T(w|v)=\{\sigma\in\operatorname{Gal}(F/K):w\circ\sigma=w\}.$

Let $e=e(w|v)=|T(w|v)|$ be the size of the inertia subgroup. If $e>1$ then we say that the archimedean place $v$ is ramified

###### Proposition 1.

The inertia subgroup $T(w|v)$ is nontrivial only when $v$ is real, $w=(\psi,\overline{\psi})$ is a complex archimedean place of $F$ and $\sigma$ is the “complex conjugation” map which has order $2$. Therefore $e(w|v)=1$ or $2$ and ramification of archimedean places occurs if and only if there is a complex place of $F$ lying above a real place of $K$.

###### Proof.

Suppose first that $w=\phi\colon F\to\mathbb{R}$ is a real embedding. Then $\phi$ is injective and $\phi\circ\sigma=\phi$ implies that $\sigma$ is the identity   automorphism and $T(w|v)$ would be trivial. So let us assume that $w=(\psi,\overline{\psi})$ is a complex archimedean place and let $\sigma\in\operatorname{Gal}(F/K)$ such that

 $(\psi,\overline{\psi})=(\psi,\overline{\psi})\circ\sigma.$

Therefore, either $\psi=\psi\circ\sigma$ (which implies that $\sigma$ is the identity by the injectivity of $\psi$) or $\psi=\overline{\psi}\circ\sigma$. The latter implies that $\sigma=\overline{\psi^{-1}}\circ\psi$, which is simply complex conjugation:

 $\overline{\psi^{-1}}\circ\psi(k)=\overline{\psi^{-1}(\psi(k))}=\overline{k}.$

Finally, since $w$ is an extension of $v$, the equation $w\circ\sigma=w$ restricts to $\overline{v}=v$, thus $v$ must be real. ∎

###### Corollary 1.

Suppose $L/K$ is an extension of number fields and assume that $K$ is a totally imaginary (http://planetmath.org/TotallyRealAndImaginaryFields) number field. Then the extension $L/K$ is unramified at all archimedean places.

###### Proof.

Since $K$ is totally imaginary none of the embeddings of $K$ are real. By the proposition, only real places can ramify. ∎

 Title ramification of archimedean places Canonical name RamificationOfArchimedeanPlaces Date of creation 2013-03-22 15:07:19 Last modified on 2013-03-22 15:07:19 Owner alozano (2414) Last modified by alozano (2414) Numerical id 9 Author alozano (2414) Entry type Definition Classification msc 12F99 Classification msc 13B02 Classification msc 11S15 Synonym finite place Synonym infinite place Related topic DecompositionGroup Related topic PlaceOfField Related topic RealAndComplexEmbeddings Related topic PlaceAsExtensionOfHomomorphism Defines decomposition and inertia group for archimedean places Defines archimedean place Defines non-archimedean place