an exact sequence for ray class groups


Let K be a number fieldMathworldPlanetmath, let π’ͺK be its ring of integersMathworldPlanetmath and let π”ͺ be a modulusMathworldPlanetmathPlanetmathPlanetmath in K, i.e.

π”ͺ=π”ͺ0⁒π”ͺ∞

where π”ͺ0 is an integral ideal in π’ͺK and π”ͺ∞ is a product of real infinite places (i.e. real archimedeanPlanetmathPlanetmathPlanetmath primes). Let Cl⁑(K) be the ideal class groupPlanetmathPlanetmathPlanetmath of K and let Cl⁑(K,π”ͺ) be the ray class group of K of conductorPlanetmathPlanetmath π”ͺ. Also, define

(π’ͺK/π”ͺ)Γ—=(π’ͺK/π”ͺ0)Γ—Γ—(β„€/2⁒℀)|π”ͺ∞|

where |π”ͺ∞| denotes the number of real places in π”ͺ. Finally, let U=π’ͺKΓ— be the unit group of K.

Proposition.

The elements above fit in the following exact sequence:

U⟢(π’ͺK/π”ͺ)Γ—βŸΆCl⁑(K,π”ͺ)⟢Cl⁑(K)⟢1.
Example 1.

Let K=β„š. Thus, Cl⁑(β„š) is trivial and U={Β±1}β‰…β„€/2⁒℀. Let π”ͺ=p⁒∞ where p>2 is any prime. Then:

(β„€/π”ͺ)Γ—=(β„€/p⁒℀)Γ—Γ—(β„€/2⁒℀).

The exact sequence now reads:

β„€/2β’β„€βŸΆ(β„€/p⁒℀)Γ—Γ—(β„€/2⁒℀)⟢Cl⁑(β„š,p⁒∞)⟢1.

Therefore, Cl⁑(β„š,p⁒∞)β‰…(β„€/p⁒℀)Γ—. In fact, as we know, the http://planetmath.org/node/RayClassFieldray class field of β„š of conductor π”ͺ=p⁒∞ is the cyclotomic fieldMathworldPlanetmath β„šβ’(ΞΆp) where ΞΆp is any primitive pth root of unityMathworldPlanetmath. Moreover

Gal⁑(β„šβ’(ΞΆp)/β„š)β‰…Cl⁑(β„š,p⁒∞)β‰…(β„€/p⁒℀)Γ—.

Finally notice that the ray class group of β„š of conductor π”ͺ=p is simply (β„€/p⁒℀)Γ—/{Β±1} which corresponds to the ray class field β„šβ’(ΞΆp)+=β„šβ’(ΞΆp+ΞΆp-1), the maximal real subfieldMathworldPlanetmath of β„šβ’(ΞΆp).

Title an exact sequence for ray class groups
Canonical name AnExactSequenceForRayClassGroups
Date of creation 2013-03-22 15:42:46
Last modified on 2013-03-22 15:42:46
Owner alozano (2414)
Last modified by alozano (2414)
Numerical id 6
Author alozano (2414)
Entry type Result
Classification msc 11R29
Related topic Modulus
Related topic RayClassField
Related topic ClassNumbersAndDiscriminantsTopicsOnClassGroups