bibliography of many-valued logics and applications

\xyoption

curve

0.1 A list of references for N-valued logics and their applications

References

  • 1 Awodey, S. & Butz, C., 2000, Topological Completeness for Higher Order Logic., Journal of Symbolic Logic, 65, 3, 1168–1182.
  • 2 Awodey, S. & Reck, E. R., 2002, Completeness and Categoricity II. Twentieth-Century MetalogicMathworldPlanetmath to Twenty-first-Century Semantics, History and Philosophy of Logic, 23, (2): 77–94.
  • 3 Awodey, S., 1996, StructureMathworldPlanetmath in Mathematics and Logic: A Categorical Perspective, Philosophia Mathematica, 3: 209–237.
  • 4 Baez, J., 1997, An Introduction to n-Categories, in Category TheoryMathworldPlanetmathPlanetmathPlanetmathPlanetmath and Computer Science, Lecture Notes in Computer Science, 1290, Berlin: Springer-Verlag, 1–33.
  • 5 Baez, J. & Dolan, J., 1998a, Higher-Dimensional Algebra III. n-Categories and the AlgebraPlanetmathPlanetmath of Opetopes, in: Advances in Mathematics, 135, 145–206.
  • 6 Baianu, I. C., R. Brown , G. Georgescu and J. F. Glazebrook: 2006, Complex Nonlinear Biodynamics in CategoriesMathworldPlanetmath, Higher Dimensional Algebra and Łukasiewicz–Moisil Topos: TransformationsPlanetmathPlanetmath of Neuronal, Genetic and Neoplastic Networks., Axiomathes,, 16: 82-165.
  • 7 Baianu, I. C.: 1977, A Logical Model of Genetic Activities in Łukasiewicz Algebras: The Non–linear Theory, Bull. of Math. Biol. 39, 249–258.
  • 8 M. Barr and C. Wells. Toposes, Triples and Theories. Montreal: McGill University, 2000.
  • 9 Barr, M. & Wells, C., 1985, Toposes, Triples and Theories, New York: Springer-Verlag.
  • 10 Birkhoff, G.: 1948, Lattice Theory, Amer. Math. Soc., New York.
  • 11 Boicescu, V., A. Filipoiu, G. Georgescu, and S. Rudeanu.: 1991, Łukasiewicz-Moisil Algebras, North-Holland, Amsterdam.
  • 12 Chang, C. C.: 1958, Algebraic analysis of many valued logics. Trans. Amer. Math. Soc., 88, 467–490.
  • 13 Chang, C. C.: 1959, A new proof of the completeness of the Łukasiewicz axioms, Transactions American Mathematical Society 93, 74-80.
  • 14 Cignoli, R., Esteva, F., Godo, L. and Torrens, A. : 2000, Basic Fuzzy Logic is the logic of continuousPlanetmathPlanetmath t-norms and their residua, Soft Computing 4, 106-112.
  • 15 Cignoli, R.: Moisil algebras, Notas de Logica Matematica, Inst. Mat., Univ. Nacional del Sur, Bahia-Blanca, No. 27.
  • 16 Bourbaki, N. : 1964. Eléments de Mathématique, Livre II, Algèbre, 4, Hermann, Editor, Paris.
  • 17 Carnap, R.: 1938, The Logical Syntax of LanguagePlanetmathPlanetmath, Harcourt, Brace and Co., New York.
  • 18 Ehresmann, C.: 1965, Catégories et Structures, Dunod, Paris.
  • 19 Eilenberg, S. and S. MacLane: 1945, The General Theory of Natural Equivalences, Trans. Amer. Math. Soc. 58, 231–294.
  • 20 Georgescu, G. and D. Popescu: 1968, On Algebraic CategoriesPlanetmathPlanetmathPlanetmath, Rev. Roum. Math. Pures et Appl. 13, 337–342.
  • 21 Georgescu, G., and C. Vraciu.: 1970. On the characterization of centered Łukasiewicz algebras. J. Algebra 16, 486-495.
  • 22 Georgescu, G., and I. Leuştean.: 2000. Towards a probability theory based on Moisil logic, Soft Computing 4, 19-26.
  • 23 Grigolia, R.S.: 1977. Algebraic analysis of Łukasiewicz-Tarski’s logical systems, in Wójcicki, R., Malinowski, G. (Eds), Selected Papers on Łukasiewicz Sentential Calculi, Osolineum, Wroclaw, pp. 81-92.
  • 24 Hilbert, D. and W. Ackerman: 1927, Grunduge der Theoretischen Logik, Springer, Berlin.
  • 25 Kan, D.M.: 1958, Adjoint FunctorsMathworldPlanetmathPlanetmath, Trans Amer. Math. Soc. 87, 294-329.
  • 26 Lambek J. and P. J. Scott: 1986, Introduction to Higher Order Categorical Logic, Cambridge University Press, Cambridge, UK, 1986.
  • 27 Lawvere, F.W.: 1963, Functorial Semantics of Algebraic Theories, Proc. Natl. Acad. Sci. USA. 50, 869–872.
  • 28 Löfgren, L.: 1968, An Axiomatic Explanation of CompletePlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath Self-Reproduction, Bull. Math. Biophys. 30, 317–348.
  • 29 Łukasiewicz, J.: 1970, Selected Works, (ed.: L. Borkowski), North-Holland Publ. Co., Amsterdam and PWN, Warsaw.
  • 30 MacLane, S. and I. Moerdijk: 1992, Sheaves in Geometry and Logic - A first Introduction to Topos Theory, Springer Verlag, New York.
  • 31 McCulloch, W. and W. Pitts: 1943, ‘A Logical Calculus of Ideas Immanent in Nervous Activity’, Bull. Math. Biophys. 5, 115–133.
  • 32 McNaughton, R.: 1951, A theorem about infinite-valued sentential logic, Journal Symbolic Logic 16, 1-13.
  • 33 Moisil, Gr. C.: 1972, Essai sur les logiques non-chrysippiennes. Ed. Academiei, Bucharest.
  • 34 Mundici, D.: 1986, InterpretationMathworldPlanetmath of AF C*-algebras in Łukasiewicz sentential calculus, J. Functional Analysis 65, 15-63.
  • 35 Rose, A.: 1956, Formalisation du calcul propositionnel implicatif à 0 valeurs de Łukasiewicz, C. R. Acad. Sci. Paris 243,1183-1185.
  • 36 Rose, A. and Rosser, J.B.: 1958, Fragments of many-valued statement calculi, Transactions American Mathematical Society 87, 1-53.
  • 37 Rose, A.: 1962, ExtensionsPlanetmathPlanetmathPlanetmath of Some Theorems of Anderson and Belnap, J. Symbolic Logic, 27, (4), 423–425.
  • 38 Rose, A.: 1978, ‘Formalisations of Further 0–Valued Łukasiewicz Propositional Calculi’. J. Symbolic Logic, 43(2): 207-210
  • 39 Rosen, R.: 1958a, A Relational Theory of Biological Systems, Bull. Math. Biophys. 20, 245–260.
  • 40 Rosen, R.: 1958b, “The Representation of Biological Systems from the Standpoint of the Theory of Categories.”, Bull. Math. Biophys. 20, 317-341.
  • 41 Rosen, R.: 1991, Life Itself, Columbia University Press, New York.
  • 42 Rosen, R.: 1999, Essays on Life Itself, Columbia University Press, New York.
  • 43 Rosenbloom, Paul.: 1950, The Elements of Mathematical Logic, Dover, New York.
  • 44 Rosenbloom, Paul.:1962, ibid., Prentice Hall, Englewood Cliffs, N.J.
  • 45 Rosser, J.B. and Turquette, A.R.: 1952, Many-Valued Logics. North-Holland Publ. Co., Amsterdam.
Title bibliography of many-valued logics and applications
Canonical name BibliographyOfManyvaluedLogicsAndApplications
Date of creation 2013-03-22 18:19:11
Last modified on 2013-03-22 18:19:11
Owner bci1 (20947)
Last modified by bci1 (20947)
Numerical id 20
Author bci1 (20947)
Entry type Bibliography
Classification msc 03G30
Classification msc 03G12
Classification msc 03G10
Classification msc 03G20
Classification msc 03-00
Synonym many-valued logic
Synonym nonstandard logics
Synonym N-valued logic
Related topic TopicEntryOnTheAlgebraicFoundationsOfMathematics
Related topic FormalLogicsAndMetaMathematics