natural transformations of organismic structures


0.1 Natural Transformations of Organismic Structures

Biological systems, or living organisms are characterized by relational structures and their dynamic transformationsPlanetmathPlanetmath which can be represented as natural transformations of heterofunctors in organismic supercategoriesPlanetmathPlanetmathPlanetmathPlanetmath (http://planetmath.org/Supercategories3)(OS). Such OS-structures can be specified mathematically either by using the Yoneda-Grothendieck Lemma and construction (http://planetmath.org/YonedaEmbedding), or they can be directly derived by a mathematical interpretationMathworldPlanetmathPlanetmath of the first ten axioms of ETAS, plus two additional axioms defining both ‘self-repair’ of metabolic components and completePlanetmathPlanetmathPlanetmathPlanetmath reproduction in terms of http://planetphysics.org/?op=getobj&from=books&id=213genetic coding, translational genomics and epigenetic meta-processes. Further details concerning mathematical, logical and complex modeling are provided in the following list of publications and related web (html) links.

References

  • 1 I.C. Baianu: 1977, A Logical Model of Genetic Activities in Łukasiewicz AlgebrasPlanetmathPlanetmath: The Non-linear Theory. Bulletin of Mathematical Biophysics, 39: 249-258.
  • 2 I.C. Baianu: 1980, Natural Transformations of Organismic Structures. Bulletin of Mathematical Biophysics 42: 431-446.
  • 3 I.C. Baianu: 1983, Natural Transformation Models in Molecular Biology., in Proceedings of the SIAM Natl. Meet., Denver, CO.; http://cogprints.org/3675/1/Naturaltransfmolbionu6.pdfAn Eprint is here available .
  • 4 I.C. Baianu: 1984, A Molecular-Set-Variable Model of Structural and Regulatory Activities in Metabolic and Genetic Networks., FASEB Proceedings 43, 917.
  • 5 I.C. Baianu: 1987a, Computer Models and Automata Theory in Biology and Medicine., in M. Witten (ed.), Mathematical Models in Medicine, vol. 7., Pergamon Press, New York, 1513-1577; http://documents.cern.ch/cgi-bin/setlink?base=preprint&categ=ext&id=ext-2004-067CERN Preprint No. EXT-2004-072:.
  • 6 I.C. Baianu: 1987b, Molecular Models of Genetic and Organismic Structures, in Proceed. Relational Biology Symp. Argentina; http://documents.cern.ch/cgi-bin/setlink?base=preprint&categ=ext&id=ext-2004-067CERN Preprint No.EXT-2004-067:MolecularModelsICB3.doc.
  • 7 I.C. Baianu, Glazebrook, J. F. and G. Georgescu: 2004, CategoriesMathworldPlanetmath of Quantum Automata and N-Valued Łukasiewicz Algebras in RelationMathworldPlanetmathPlanetmathPlanetmath to Dynamic Bionetworks, (M,R)–Systems and Their Higher Dimensional AlgebraPlanetmathPlanetmath, http://www.ag.uiuc.edu/fs401/QAuto.pdfAbstract of Report is here available as a PDF and http://doc.cern.ch/archive/electronic/other/ext/ext-2004-058/QuantumAutnu3_ICB.pdfhtml document
  • 8 R. Brown R, P.J. Higgins, and R. Sivera.: “Non–AbelianMathworldPlanetmath Algebraic Topology,(in preparation). http://arxiv.org/PS_cache/math/pdf/0407/0407275v2.pdfavailable here as PDF.
  • 9 R. Brown, J. F. Glazebrook and I. C. Baianu: A categorical and higher dimensional algebra framework for complex systemsPlanetmathPlanetmath and spacetime structures, Axiomathes 17:409-493. (2007).
  • 10 L. Lo¨fgren: 1968. On Axiomatic Explanation of Complete Self–Reproduction. Bull. Math. Biophysics, 30: 317-348.
  • 11 Contributed Review. 2009. GNUL download. http://planetphysics.org/?op=getobj&from=books&id=213“DNA Molecular Models and Dynamics.”
Title natural transformations of organismic structures
Canonical name NaturalTransformationsOfOrganismicStructures
Date of creation 2013-03-22 18:13:07
Last modified on 2013-03-22 18:13:07
Owner bci1 (20947)
Last modified by bci1 (20947)
Numerical id 31
Author bci1 (20947)
Entry type Topic
Classification msc 55T99
Classification msc 18C99
Classification msc 18A25
Classification msc 18A30
Classification msc 18A40
Synonym dynamics in organismic supercategories
Synonym organismic supercategory biodynamics
Related topic Supercategory
Related topic ETAC
Related topic ETAS
Related topic Supercategories3
Related topic SupercategoriesOfComplexSystems
Related topic ComplexSystemsBiology
Defines natural transformations of heterofunctors in supercategories