proof of Gelfand-Naimark representation theorem


\PMlinkescapephrase

representation \PMlinkescapephraserepresentations

Proof: Let π’œ be a C*-algebraPlanetmathPlanetmath (http://planetmath.org/CAlgebra). We intend to prove that π’œ is isometrically isomorphic to a norm closed *-subalgebra of B⁒(H), the algebra of bounded operatorsMathworldPlanetmathPlanetmath of a suitable Hilbert spaceMathworldPlanetmath H.

Let S⁒(π’œ) denote the state space of π’œ. For every state Ο•βˆˆS⁒(π’œ) the Gelfand-Naimark-Segal construction allows one to construct a representation (http://planetmath.org/BanachAlgebraRepresentation) πϕ:π’œβŸΆB⁒(HΟ•) of π’œ in a Hilbert space HΟ•.

Now consider the direct sumMathworldPlanetmathPlanetmathPlanetmathPlanetmath (http://planetmath.org/BanachAlgebraRepresentation) of these representations Ο€:=βŠ•Ο•βˆˆS⁒(π’œ)πϕ. Recall that Ο€ is a representation

Ο€:π’œβŸΆB⁒(βŠ•Ο•βˆˆS⁒(π’œ)HΟ•)

of π’œ in the direct sum of the family of Hilbert spaces (http://planetmath.org/DirectSumOfHilbertSpaces) {HΟ•}Ο•βˆˆS⁒(π’œ).

We now prove that this representation is injectivePlanetmathPlanetmath.

Suppose there exists aβˆˆπ’œ such that π⁒(a)=0. Then, for all Ο•βˆˆS⁒(π’œ), πϕ⁒(a)=0. Thus, by definition of πϕ,

ϕ⁒(a)=βŸ¨Ο€Ο•β’(a)⁒ξϕ,ΞΎΟ•βŸ©=0

where ΞΎΟ•βˆˆHΟ• is the cyclic vectorMathworldPlanetmathPlanetmath associated with πϕ. Since for every Ο•βˆˆS⁒(π’œ) we have ϕ⁒(a)=0, we can conclude that a=0 (see this entry (http://planetmath.org/PropertiesOfStates)), i.e. Ο€ is injective.

Since an injective *-homomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath between C*-algebras is isometric (http://planetmath.org/InjectiveCAlgebraHomomorphismIsIsometric), we conclude that Ο€ is also isometric. Hence π⁒(π’œ) is a closed *-subalgebra of B⁒(βŠ•Ο•βˆˆS⁒(π’œ)HΟ•). Thus, we have proven that Ο€ is an isometric isomorphism between π’œ and a closed *-subalgebra of B⁒(H), for a suitable Hilbert space H. β–‘

Title proof of Gelfand-Naimark representation theorem
Canonical name ProofOfGelfandNaimarkRepresentationTheorem
Date of creation 2013-03-22 18:01:17
Last modified on 2013-03-22 18:01:17
Owner asteroid (17536)
Last modified by asteroid (17536)
Numerical id 7
Author asteroid (17536)
Entry type Proof
Classification msc 46L05
Related topic GelfandNaimarkRepresentationTheorem