proof of Hilbert’s Nullstellensatz
Let be an algebraically closed field, let , and let be an ideal of the polynomial ring![]()
. Let be
a polynomial
![]()
with the property that
Suppose that for all ; in particular, is strictly smaller than and . Consider the ring
The -ideal is strictly smaller than , since
does not contain the unit element. Let be an indeterminate over
, and let be the inverse image of under
the homomorphism
acting as the identity on and sending to
. Then is strictly smaller than , so
the weak Nullstellensatz gives us an element such that for all . In
particular, we see that for all . Our
assumption
on therefore implies . However,
also contains the element since sends this element
to zero. This leads to the following contradiction
![]()
:
The assumption that for all is therefore false, i.e. there is an with .
| Title | proof of Hilbert’s Nullstellensatz |
|---|---|
| Canonical name | ProofOfHilbertsNullstellensatz |
| Date of creation | 2013-03-22 15:27:46 |
| Last modified on | 2013-03-22 15:27:46 |
| Owner | pbruin (1001) |
| Last modified by | pbruin (1001) |
| Numerical id | 4 |
| Author | pbruin (1001) |
| Entry type | Proof |
| Classification | msc 13A10 |