Uniform Algebra


Definition.

A commutative, unital Banach algebraMathworldPlanetmath (π’œ,βˆ₯β‹…βˆ₯) is called uniform Banach algebra (for short: uB algebraMathworldPlanetmathPlanetmath) if for all fβˆˆπ’œ we have

βˆ₯f2βˆ₯ =βˆ₯fβˆ₯2

In what follows we will show that the Gelfand transform Ξ“π’œ:π’œβ†¦π’œ^ of a commutative, unital Banach algebra π’œ is an isometry if and only if π’œ is a uniform Banach algebra.

Denote by M⁒(π’œ) the space of (continuousPlanetmathPlanetmath) charactersMathworldPlanetmath on π’œ. Recall that for all fβˆˆπ’œ the spectrum σ⁒(f) of f is identical with the range f^⁒(M⁒(π’œ)) and the spectral radius r⁒(f)=βˆ₯f^βˆ₯M⁒(π’œ)=limnβ†’βˆžβ‘βˆ₯fnβˆ₯1n

PropositionPlanetmathPlanetmathPlanetmath 1. A Banach algebra π’œ is uniform if and only if it’s Gelfand transform Ξ“π’œ:π’œβ†’π’œ^,f↦f^ is isometric.

Proof.

If f↦f^ is an isometry we have βˆ₯f2βˆ₯=βˆ₯f^2βˆ₯M⁒(π’œ)=βˆ₯f^βˆ₯M⁒(π’œ)2=βˆ₯fβˆ₯2.

Conversely assume βˆ₯f2βˆ₯=βˆ₯fβˆ₯2 for all fβˆˆπ’œ. Then by inductionMathworldPlanetmath we have βˆ₯f2nβˆ₯=βˆ₯fβˆ₯2n for all nβˆˆβ„•. Hence βˆ₯fβˆ₯=βˆ₯f2nβˆ₯12nβ†’βˆ₯f^βˆ₯M⁒(π’œ). ∎

The following characterizationMathworldPlanetmath is also often given as the definition of a uB algebra.

Proposition 2. A Banach algebra π’œ is uniform iff it is topologically and algebraically isomorphic to a closed, pointseparating subalgebraPlanetmathPlanetmath of C⁒(X) for X a compact Hausdorff space.

Proof.

Since π’œ^ separates the points of the compact, nonempty space M⁒(π’œ) we see that a uB algebra π’œ must have this property.

Conversely, let π’œ be a closed pointseparating subalgebra of C⁒(X). Then clearly βˆ₯fβˆ₯X2=βˆ₯f2βˆ₯X for all fβˆˆπ’œ. ∎

References

  • (Gamelin 2005) Theodore W. Gamelin Uniform Algebras, Oxford University Press, New Edition, 2005
Title Uniform Algebra
Canonical name UniformAlgebra
Date of creation 2013-03-22 19:04:20
Last modified on 2013-03-22 19:04:20
Owner karstenb (16623)
Last modified by karstenb (16623)
Numerical id 5
Author karstenb (16623)
Entry type Definition
Classification msc 46J40
Classification msc 46J10