# concatenation

## Concatenation on Words

Let $a,b$ be two words. Loosely speaking, the concatenation  , or juxtaposition of $a$ and $b$ is the word of the form $ab$. In order to define this rigorously, let us first do a little review of what words are.

Let $\Sigma$ be a set whose elements we call letters (we also call $\Sigma$ an alphabet). A (finite) word or a string on $\Sigma$ is a partial function  $w:\mathbb{N}\to\Sigma$, (where $\mathbb{N}$ is the set of natural numbers), such that, if $\operatorname{dom}(w)\neq\varnothing$, then there is an $n\in\mathbb{N}$ such that

 $w\textrm{ is }\left\{\begin{array}[]{ll}\textrm{defined for every }m\leq n,\\ \textrm{undefined otherwise.}\end{array}\right.$

This $n$ is necessarily unique, and is called the length of the word $w$. The length of a word $w$ is usually denoted by $|w|$. The word whose domain is $\varnothing$, the empty set  , is called the empty word   , and is denoted by $\lambda$. It is easy to see that $|\lambda|=0$. Any element in the range of $w$ has the form $w(i)$, but it is more commonly written $w_{i}$. If a word $w$ is not the empty word, then we may write it as $w_{1}w_{2}\cdots w_{n}$, where $n=|w|$. The collection  of all words on $\Sigma$ is denoted $\Sigma^{*}$ (the asterisk ${}^{*}$ is commonly known as the Kleene star operation  of a set). Using the definition above, we see that $\lambda\in\Sigma^{*}$.

Now we define a binary operation  $\circ$ on $\Sigma^{*}$, called the concatenation on the alphabet $\Sigma$, as follows: let $v,w\in\Sigma^{*}$ with $m=|v|$ and $n=|w|$. Then $\circ(v,w)$ is the partial function whose domain is the set $\{1,\ldots,m,m+1,\ldots,m+n\}$, such that

 $\circ(v,w)(i)=\left\{\begin{array}[]{ll}v(i)&\textrm{if }i\leq m\\ w(i-m)&\textrm{otherwise.}\end{array}\right.$

The partial function $\circ(v,w)$ is written $v\circ w$, or simply $vw$, when it does not cause any confusion. Therefore, if $v=v_{1}\cdots v_{m}$ and $w=w_{1}\cdots w_{n}$, then $vw=v_{1}\cdots v_{m}w_{1}\cdots w_{n}$.

Below are some simple properties of $\circ$ on words:

• $\circ$ is associative: $(uv)w=u(vw)$.

• $\lambda w=w\lambda=w$.

• As a result, $\Sigma^{*}$ together with $\circ$ is a monoid.

• $vw=\lambda$ iff $v=w=\lambda$.

• As a result, $\Sigma^{*}$ is never a group unless $\Sigma^{*}=\{\lambda\}$.

• If $a=bc$ where $a$ is a letter, then one of $b,c$ is $a$, and the other the empty word $\lambda$.

• If $ab=cd$ where $a,b,c,d$ are letters, then $a=c$ and $b=d$.

## Concatenation on Languages

The concatenation operation $\circ$ over an alphabet $\Sigma$ can be extended to operations on languages  over $\Sigma$. Suppose $A,B$ are two languages over $\Sigma$, we define

 $A\circ B:=\{u\circ v\mid u\in A,v\in B\}.$

When there is no confusion, we write $AB$ for $A\circ B$.

Below are some simple properties of $\circ$ on languages:

• $(AB)C=A(BC)$; i.e. (http://planetmath.org/Ie), concatenation of sets of letters is associative.

• Because of the associativity of $\circ$, we can inductively define $A^{n}$ for any positive integer $n$, as $A^{1}=A$, and $A^{n+1}=A^{n}A$.

• It is not hard to see that $\Sigma^{*}=\{\lambda\}\cup\Sigma\cup\Sigma^{2}\cup\cdots\cup\Sigma^{n}\cup\cdots$.

## References

• 1 H.R. Lewis, C.H. Papadimitriou Elements of the Theory of Computation. Prentice-Hall, Englewood Cliffs, New Jersey (1981).
 Title concatenation Canonical name Concatenation Date of creation 2013-03-22 17:16:38 Last modified on 2013-03-22 17:16:38 Owner CWoo (3771) Last modified by CWoo (3771) Numerical id 17 Author CWoo (3771) Entry type Definition Classification msc 20M35 Classification msc 68Q70 Synonym juxtaposition Synonym monoidal Related topic Word Defines length Defines length of a word Defines monoidal language