# imaginaries

Given an algebraic structure  $S$ to investigate, mathematicians consider substructures, restrictions   of the structure  , quotient structures and the like. A natural question for a mathematician to ask if he is to understand $S$ is “What structures naturally live in $S$?” We can formalise this question in the following manner: Given some logic appropriate to the structure $S$, we say another structure $T$ is definable in $S$ iff there is some definable subset $T^{\prime}$ of $S^{n}$, a bijection $\sigma:T^{\prime}\rightarrow T$ and a definable function (respectively relation    ) on $T^{\prime}$ for each function (resp. relation) on $T$ so that $\sigma$ is an isomorphism        (of the relevant type for $T$).

For an example take some infinite group $(G,.)$. Consider the centre of $G$, $Z:=\{x\in G:\forall y\in G(xy=yx)\}$. Then $Z$ is a first order definable subset of $G$, which forms a group with the restriction of the multiplication, so $(Z,.)$ is a first order definable structure in $(G,.)$.

As another example consider the structure $(\mathbf{R},+,.,0,1)$ as a field. Then the structure $(\mathbf{R},<)$ is first order definable in the structure $(\mathbf{R},+,.,0,1)$ as for all $x,y\in\mathbf{R}^{2}$ we have $x\leq y$ iff $\exists z(z^{2}=y-x)$. Thus we know that $(\mathbf{R},+,.,0,1)$ is unstable as it has a definable order on an infinite subset.

Returning to the first example, $Z$ is normal in $G$, so the set of (left) cosets of $Z$ form a factor group. The domain of the factor group is the quotient of $G$ under the equivalence relation  $x\equiv y$ iff $\exists z\in Z(xz=y)$. Therefore the factor group $G/Z$ will not (in general) be a definable structure, but would seem to be a “natural” structure. We therefore weaken our formalisation of “natural” from definable to interpretable. Here we require that a structure is isomorphic to some definable structure on equivalence classes  of definable equivalence relations. The equivalence classes of a $\emptyset$-definable equivalence relation are called imaginaries.

###### Definition 0.1

A structure $\mathfrak{A}$ with at least two distinct $\emptyset$-definable elements admits elimination of imaginaries iff for every $n\in\mathbf{N}$ and $\emptyset$-definable equivalence relation $\sim$ on $\mathfrak{A}^{n}$ there is a $\emptyset$-definable function $f:\mathfrak{A}^{n}\rightarrow\mathfrak{A}^{p}$ (for some $p$) such that for all $x$ and $y$ from $\mathfrak{A}^{n}$ we have

 $x\sim y\textrm{ iff }f(x)=f(y).$

Given this property, we think of the function $f$ as coding the equivalence classes of $\sim$, and we call $f(x)$ a code for $x/\sim$. If a structure has elimination of imaginaries then every interpretable structure is definable.

In  Shelah defined, for any structure $\mathfrak{A}$ a multi-sorted structure $\mathfrak{A}^{eq}$. This is done by adding a sort for every $\emptyset$-definable equivalence relation, so that the equivalence classes are elements (and code themselves). This is a closure operator  i.e. $\mathfrak{A}^{eq}$ has elimination of imaginaries. See  chapter 4 for a good presentation   of imaginaries and $\mathfrak{A}^{eq}$. The idea of passing to $\mathfrak{A}^{eq}$ is very useful for many purposes. Unfortunately $\mathfrak{A}^{eq}$ has an unwieldy language  and theory. Also this approach does not answer the question above. We would like to show that our structure has elimination of imaginaries with just a small selection of sorts added, and perhaps in a simple language. This would allow us to describe the definable structures more easily, and as we have elimination of imaginaries this would also describe the interpretable structures.

## References

• 1 Wilfrid Hodges, Cambridge University Press, 1997.
• 2 Bruno Poizat, Une théorie de Galois imaginaire, Journal of Symbolic Logic, 48 (1983), pp. 1151-1170.
• 3 Saharon Shelah, Classification Theory and the Number of Non-isomorphic Models, North Hollans, Amsterdam, 1978.
 Title imaginaries Canonical name Imaginaries Date of creation 2013-03-22 13:25:50 Last modified on 2013-03-22 13:25:50 Owner mathcam (2727) Last modified by mathcam (2727) Numerical id 7 Author mathcam (2727) Entry type Definition Classification msc 03C95 Classification msc 03C68 Related topic CyclicCode Defines imaginaries Defines elimination of imaginaries Defines definable structure Defines interpretable structure Defines code