topic entry on the algebraic foundations of mathematics


This is a contributed topic on the algebraic foundations of mathematics. This topic of algebraicPlanetmathPlanetmath foundations in mathematics will cover a wide range of concepts and areas of mathematics, ranging from universal algebrasMathworldPlanetmath, algebraic topology to algebraic geometryMathworldPlanetmathPlanetmath, number theory and logic algebras.

a. UniversalPlanetmathPlanetmathPlanetmath (or general) algebraMathworldPlanetmathPlanetmath : is defined as the (meta) mathematical study of general theories of algebraic structures rather than the study of specific cases, or models of algebraic structures.

b. Various, specifically selected algebraic structures, such as :

  1. 1.
  2. 2.

    Logic lattice algebras or many-valued (MV) logic algebras

  3. 3.

    Quantum logicPlanetmathPlanetmath algebras

  4. 4.

    Quantum operator algebrasPlanetmathPlanetmathPlanetmath ( such as : involutionPlanetmathPlanetmath, *-algebras, or *-algebras, von Neumann algebrasMathworldPlanetmathPlanetmathPlanetmath, JB- and JL- algebras, Poisson and C* - or C*- algebras,

  5. 5.

    Algebra over a set

  6. 6.

    Sigma-algebra and T-algebrasPlanetmathPlanetmath of monads

  7. 7.

    K-algebras

  8. 8.
  9. 9.

    Graphs generated by free groupsMathworldPlanetmath

  10. 10.

    Groupoid algebras and GroupoidPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath C*-convolution algebras

  11. 11.

    Hypergraphs generated by free groupoids

  12. 12.

    Double algebras

  13. 13.

    Index of algebras

  14. 14.
  15. 15.

    F-algebra/coalgebra in category theoryMathworldPlanetmathPlanetmathPlanetmath

  16. 16.

    Category of categories as a foundation for mathematics: Functor CategoriesPlanetmathPlanetmath (http://planetmath.org/FunctorCategories) and 2-category (http://planetmath.org/2Category)

  17. 17.

    Index of category theory (http://planetmath.org/IndexOfCategoryTheory)

  18. 18.

    super-categoriesPlanetmathPlanetmath and topological ‘supercategories’

  19. 19.

    Higher dimensional algebrasPlanetmathPlanetmath (HDA) –such as: algebroids, double algebroids, categorical algebroids, double groupoidPlanetmathPlanetmathPlanetmath convolution algebroids, groupoid C* -convolution algebroids, etc., and Supercategorical algebras (SA) as concrete interpretationsMathworldPlanetmathPlanetmath of the theory of elementary abstract supercategories (ETAS)

  20. 20.

    Index of supercategories

  21. 21.

    Index of categories (http://planetmath.org/IndexOfCategories)

  22. 22.

    Index of HDA

Remark The last items of HDA and SA are more precisely understood in the context of, or as generalizationsPlanetmathPlanetmath/ extensionsPlanetmathPlanetmathPlanetmath of, universal algebras.

References

  • 1 Alfsen, E.M. and F. W. Schultz: Geometry of State SpacesMathworldPlanetmath of Operator Algebras, Birkhäuser, Boston–Basel–Berlin (2003).
  • 2 Atyiah, M.F. 1956. On the Krull-Schmidt theorem with applications to sheaves. Bull. Soc. Math. France, 84: 307–317.
  • 3 Auslander, M. 1965. Coherent Functors. Proc. Conf. Cat. Algebra, La Jolla, 189–231.
  • 4 Awodey, S. & Butz, C., 2000, Topological Completeness for Higher Order Logic., Journal of Symbolic Logic, 65, 3, 1168–1182.
  • 5 Awodey, S. & Reck, E. R., 2002, Completeness and Categoricity I. Nineteen-Century Axiomatics to Twentieth-Century MetalogicMathworldPlanetmath., History and Philosophy of Logic, 23, 1, 1–30.
  • 6 Awodey, S. & Reck, E. R., 2002, “Completeness and Categoricity II. Twentieth-Century Metalogic to Twenty-first-Century Semantics”, History and Philosophy of Logic, 23, 2, 77–94.
  • 7 Structure in Mathematics and Logic: A Categorical Perspective”, Philosophia Mathematica, 3, 209–237.
  • 8 Awodey, S., 2004, “An Answer to Hellman’s Question: Does Category Theory Provide a Framework for Mathematical Structuralism”, Philosophia Mathematica, 12, 54–64.
  • 9 Awodey, S., 2006, Category Theory, Oxford: Clarendon Press.
  • 10 Baez, J. & Dolan, J., 1998a, “Higher-Dimensional Algebra III. n-Categories and the Algebra of Opetopes”, Advances in Mathematics, 135, 145–206.
  • 11 Baez, J. & Dolan, J., 2001, “From Finite SetsMathworldPlanetmath to Feynman Diagrams”, Mathematics Unlimited – 2001 and Beyond, Berlin: Springer, 29–50.
  • 12 Baez, J., 1997, “An Introduction to n-Categories”, Category Theory and Computer Science, Lecture Notes in Computer Science, 1290, Berlin: Springer-Verlag, 1–33.
  • 13 Baianu, I.C.: 1970, Organismic SupercategoriesPlanetmathPlanetmath: II. On Multistable Systems. Bulletin of Mathematical Biophysics, 32: 539-561.
  • 14 Baianu, I.C.: 1971b, CategoriesMathworldPlanetmath, FunctorsMathworldPlanetmath and Quantum Algebraic Computations, in P. Suppes (ed.), Proceed. Fourth Intl. Congress Logic-Mathematics-Philosophy of Science, September 1–4, 1971, Bucharest.
  • 15 Baianu, I.C. and D. Scripcariu: 1973, On Adjoint Dynamical Systems. Bulletin of Mathematical Biophysics, 35(4), 475–486.
  • 16 Baianu, I.C.: 1973, Some Algebraic Properties of (M,R) – Systems. Bulletin of Mathematical Biophysics 35, 213-217.
  • 17 Baianu, I.C. and M. Marinescu: 1974, On A Functorial Construction of (M,R)– Systems. Revue Roumaine de Mathematiques Pures et Appliquees 19: 388-391.
  • 18 Baianu, I.C.: 1977, A Logical Model of Genetic Activities in Łukasiewicz Algebras: The Non-linear Theory. Bulletin of Mathematical Biology, 39: 249-258.
  • 19 Baianu, I.C.: 1980a, Natural Transformations of Organismic Structures., Bulletin of Mathematical Biology,42: 431-446.
  • 20 Baianu, I. C., Glazebrook, J. F. and G. Georgescu: 2004, Categories of Quantum Automata and N-Valued Łukasiewicz Algebras in RelationMathworldPlanetmathPlanetmathPlanetmath to Dynamic Bionetworks, (M,R)–Systems and Their Higher Dimensional Algebra, Abstract and Preprint of Report: http://www.ag.uiuc.edu/fs401/QAuto.pdf and http://www.medicalupapers.com/quantum+automata+math+categories+baianu/
  • 21 Baianu I. C., Brown R., Georgescu G. and J. F. Glazebrook: 2006, Complex Nonlinear Biodynamics in Categories, Higher Dimensional Algebra and Łukasiewicz-Moisil Topos: TransformationsPlanetmathPlanetmath of Neuronal, Genetic and Neoplastic Networks., Axiomathes, 16 Nos. 1-2: 65-122.
  • 22 Baianu, I.C., R. Brown and J.F. Glazebrook. : 2007a, Categorical Ontology of Complex Spacetime Structures: The Emergence of Life and Human Consciousness, Axiomathes, 17: 35-168.
  • 23 Baianu, I.C., R. Brown and J. F. Glazebrook: 2007b, A Non-AbelianMathworldPlanetmathPlanetmath, Categorical Ontology of Spacetimes and Quantum Gravity, Axiomathes, 17: 169-225.
  • 24 Barr, M. and Wells, C., 1985, Toposes, Triples and Theories, New York: Springer-Verlag.
  • 25 Barr, M. and Wells, C., 1999, Category Theory for Computing Science, Montreal: CRM.
  • 26 Bell, J. L., 1981, “Category Theory and the Foundations of Mathematics”, British Journal for the Philosophy of Science, 32, 349–358.
  • 27 Bell, J. L., 1982, “Categories, Toposes and Sets”, Synthese, 51, 3, 293–337.
  • 28 Bell, J. L., 1986, “From Absolute to Local Mathematics”, Synthese, 69, 3, 409–426.
  • 29 Bell, J. L., 1988, Toposes and Local Set TheoriesMathworldPlanetmath: An Introduction, Oxford: Oxford University Press.
  • 30 Birkoff, G. & Mac Lane, S., 1999, Algebra, 3rd ed., Providence: AMS.
  • 31 Blass, A. and Scedrov, A., 1983, Classifying Topoi and Finite ForcingMathworldPlanetmath , Journal of Pure and Applied Algebra, 28, 111–140.
  • 32 Blass, A. and Scedrov, A., 1992, ”CompletePlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath Topoi Representing Models of Set Theory”, Annals of Pure and Applied Logic , 57, no. 1, 1–26.
  • 33 Borceux, F.: 1994, Handbook of Categorical Algebra, vols: 1–3, in Encyclopedia of Mathematics and its Applications 50 to 52, Cambridge University Press.
  • 34 Bourbaki, N. 1961 and 1964: Algèbre commutativePlanetmathPlanetmathPlanetmath., in Èléments de Mathématique., Chs. 1–6., Hermann: Paris.
  • 35 BJk4) Brown, R. and G. Janelidze: 2004, Galois theory and a new homotopy double groupoidPlanetmathPlanetmath of a map of spaces, Applied Categorical Structures 12: 63-80.
  • 36 Brown, R., Higgins, P. J. and R. Sivera,: 2007a, Non-Abelian Algebraic Topology, in preparation.
    http://www.bangor.ac.uk/ mas010/nonab-a-t.html ;
    http://www.bangor.ac.uk/ mas010/nonab-t/partI010604.pdf
  • 37 Brown, R., Glazebrook, J. F. and I.C. Baianu.: 2007b, A Conceptual, Categorical and Higher Dimensional Algebra Framework of Universal Ontology and the Theory of Levels for Highly Complex Structures and Dynamics., Axiomathes (17): 321–379.
  • 38 Brown R. and T. Porter: 2003, Category theory and higher dimensional algebra: potential descriptive tools in neuroscience, In: Proceedings of the International Conference on Theoretical Neurobiology, Delhi, February 2003, edited by Nandini Singh, National Brain Research Centre, Conference Proceedings 1, 80-92.
  • 39 Brown, R., Hardie, K., Kamps, H. and T. Porter: 2002, The homotopy double groupoid of a Hausdorff space., Theory and Applications of Categories 10, 71-93.
  • 40 Brown, R., and Hardy, J.P.L.:1976, Topological groupoidsPlanetmathPlanetmathPlanetmathPlanetmath I: universal constructions, Math. Nachr., 71: 273-286.
  • 41 Brown, R. and Spencer, C.B.: 1976, Double groupoids and crossed modules, Cah. Top. Géom. Diff. 17, 343-362.
  • 42 Brown R, Razak Salleh A (1999) Free crossed resolutions of groups and presentationsMathworldPlanetmathPlanetmath of modules of identitiesPlanetmathPlanetmathPlanetmathPlanetmath among relations. LMS J. Comput. Math., 2: 25–61.
  • 43 Buchsbaum, D. A.: 1955, Exact categories and duality., Trans. Amer. Math. Soc. 80: 1-34.
  • 44 Buchsbaum, D. A.: 1969, A note on homologyMathworldPlanetmathPlanetmath in categories., Ann. of Math. 69: 66-74.
  • 45 Bucur, I., and Deleanu A. (1968). Introduction to the Theory of Categories and Functors. J.Wiley and Sons: London
  • 46 Bunge, M. and S. Lack: 2003, Van Kampen theorems for toposes, Adv. in Math. 179, 291-317.
  • 47 Bunge, M., 1984, ”Toposes in Logic and Logic in Toposes”, Topoi, 3, no. 1, 13-22.
  • 48 Bunge M, Lack S (2003) Van Kampen theorems for toposes. Adv Math, 179: 291-317.
  • 49 Cartan, H. and Eilenberg, S. 1956. Homological Algebra, Princeton Univ. Press: Pinceton.
  • 50 Cohen, P.M. 1965. Universal Algebra, Harper and Row: New York, London and Tokyo.
  • 51 Connes A 1994. Noncommutative geometryPlanetmathPlanetmath. Academic Press: New York.
  • 52 Croisot, R. and Lesieur, L. 1963. Algèbre noethérienne non-commutative., Gauthier-Villard: Paris.

…more to come

Title topic entry on the algebraic foundations of mathematics
Canonical name TopicEntryOnTheAlgebraicFoundationsOfMathematics
Date of creation 2013-03-22 18:14:02
Last modified on 2013-03-22 18:14:02
Owner bci1 (20947)
Last modified by bci1 (20947)
Numerical id 35
Author bci1 (20947)
Entry type Topic
Classification msc 08A99
Classification msc 08A70
Classification msc 18E05
Classification msc 18-00
Classification msc 03-00
Classification msc 08A05
Synonym Algebraic Foundations of Mathematics
Related topic Algebras
Related topic Graph
Related topic Hypergraph
Related topic TopicEntryOnAlgebra
Related topic IndexOfCategoryTheory
Related topic NonAbelianStructures
Related topic JordanBanachAndJordanLieAlgebras
Related topic AbelianCategory
Related topic AxiomsForAnAbelianCategory
Related topic GeneralizedVanKampenTheoremsHigherDimensional
Related topic AxiomaticTheoryOfSupercategories
Related topic Categ
Defines universal algebra
Defines algebraic structure
Defines logic algebra
Defines co-algebra
Defines gebra
Defines K-algebra
Defines quantum algebra
Defines lattice algebra