invertibility of regularly generated ideal


Lemma.   Let R be a commutative ring containing regular elementsPlanetmathPlanetmath.  If π”ž, π”Ÿ and 𝔠 are three ideals of R such that β€‰π”Ÿ+𝔠,  𝔠+π”žβ€‰ and  π”ž+π”Ÿβ€‰ are invertiblePlanetmathPlanetmath (http://planetmath.org/FractionalIdealOfCommutativeRing), then also their sum ideal  π”ž+π”Ÿ+𝔠  is .

Proof.  We may assume that R has a unity, therefore the productMathworldPlanetmathPlanetmath of an ideal and its inverseMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath (http://planetmath.org/FractionalIdealOfCommutativeRing) is always R.  Now, the ideals  π”Ÿ+𝔠,  𝔠+π”žβ€‰ and  π”ž+π”Ÿβ€‰ have the 𝔣1, 𝔣2 and 𝔣3, respectively, so that

(π”Ÿ+𝔠)⁒𝔣1=(𝔠+π”ž)⁒𝔣2=(π”ž+π”Ÿ)⁒𝔣3=R.

Because  π”žβ’π”£2βŠ†R  and  𝔠⁒𝔣1βŠ†R,  we obtain

(π”ž+π”Ÿ+𝔠)⁒(π”žβ’π”£2⁒𝔣3+𝔠⁒𝔣1⁒𝔣2)  =(π”ž+π”Ÿ)β’π”žβ’π”£2⁒𝔣3+𝔠⁒(π”žβ’π”£2)⁒𝔣3+π”žβ’(𝔠⁒𝔣1)⁒𝔣2+(π”Ÿ+𝔠)⁒𝔠⁒𝔣1⁒𝔣2
 =π”žβ’π”£2+𝔠⁒𝔣2=(𝔠+π”ž)⁒𝔣2
 =R.

Theorem.  Let R be a commutative ring containing regular elements.  If every ideal of R generated by two regular elements is , then in R also every ideal generated by a finite setMathworldPlanetmath of regular elements is .

Proof.  We use inductionMathworldPlanetmath on n, the number of the regular elements of the generating set.  We thus assume that every ideal of R generated by n regular elements  (n≧2)  is .  Let  {r1,r2,…,rn+1} be any set of regular elements of R.  Denote

π”ž=:(r1),π”Ÿ=:(r2,…,rn),𝔠=:(rn+1).

The sums β€‰π”Ÿ+𝔠,  𝔠+π”žβ€‰ and  π”ž+π”Ÿβ€‰ are, by the assumptionsPlanetmathPlanetmath, .  Then the ideal

(r1,r2,…,rn,rn+1)=π”ž+π”Ÿ+𝔠

is, by the lemma, , and the induction proof is completePlanetmathPlanetmathPlanetmathPlanetmath.

References

  • 1 R. Gilmer: Multiplicative ideal theory.  Queens University Press. Kingston, Ontario (1968).
Title invertibility of regularly generated ideal
Canonical name InvertibilityOfRegularlyGeneratedIdeal
Date of creation 2015-05-06 15:27:47
Last modified on 2015-05-06 15:27:47
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 17
Author pahio (2872)
Entry type Theorem
Classification msc 13A15
Classification msc 11R04
Related topic IdealMultiplicationLaws
Related topic PruferRing
Related topic InvertibleIdealIsFinitelyGenerated