## You are here

Homeword problem

## Primary tabs

# word problem

Let $(X;R)$ be a presentation^{} for the group $G=\mathrm{Gp}\left\langle X\mid R\right\rangle$. It is well known that $G$ is a quotient group of the free monoid with involution on $X$, i.e. $G=\left(X\amalg X^{{-1}}\right)^{\ast}/\theta$ for some congruence^{} $\theta\subseteq\left(X\amalg X^{{-1}}\right)^{\ast}\times\left(X\amalg X^{{-1}%
}\right)^{\ast}$. We recall that $R\subset\left(X\amalg X^{{-1}}\right)^{\ast}$ is a set of words all representing the identity^{} $1_{G}$ of the group, i.e. $[r]_{\theta}=1_{G}$ for all $r\in R$. The *word problem* in the category of groups consists in establish whether or not two given words $v,w\in\left(X\amalg X^{{-1}}\right)^{\ast}$ represent the same element of $G$, i.e. whether or not $[v]_{\theta}=[w]_{\theta}$.

Let $(X;T)$ be a presentation for the inverse^{} monoid $M=\mathrm{Inv}^{1}\left\langle X\mid T\right\rangle=\left(X\amalg X^{{-1}}%
\right)^{\ast}/\tau$, where $\tau=(\rho_{X}\cup T)^{\mathrm{c}}$. The concept of presentation for inverse monoid is analogous to the group’s one, but now $T$ is a binary relation on $\left(X\amalg X^{{-1}}\right)^{\ast}$, i.e. $T\subseteq\left(X\amalg X^{{-1}}\right)^{\ast}\times\left(X\amalg X^{{-1}}%
\right)^{\ast}$.
The *word problem* in the category of inverse monoids consists in establish whether or not two given words $v,w\in\left(X\amalg X^{{-1}}\right)^{\ast}$ represent the same element of $M$, i.e. whether or not $[v]_{\tau}=[w]_{\tau}$.

We can modify the last paragraph to introduce the *word problem* in the category of inverse semigroups as well.

A classical results in combinatorial group theory says that the word problem in the category of groups is undecidable, so it is undecidable also for the larger categories of inverse semigroups and inverse monoids.

# References

- 1
W. W. Boone,
*Certain simple unsolvable problems in group theory*, I, II, III, IV, V, VI, Nederl. Akad.Wetensch Proc. Ser. A57, 231-237,492- 497 (1954), 58, 252-256,571-577 (1955), 60, 22-27,227-232 (1957). - 2
R. Lyndon and P. Schupp,
*Combinatorial Group Theory*, Springer-Verlag, 1977. - 3
P.S. Novikov,
*On the algorithmic unsolvability of the word problem in group theory*, Trudy Mat. Inst. Steklov 44, 1-143 (1955). - 4
J.B. Stephen,
*Presentation of inverse monoids*, J. Pure Appl. Algebra^{}63 (1990) 81- 112.

## Mathematics Subject Classification

20M18*no label found*20M05

*no label found*

- Forums
- Planetary Bugs
- HS/Secondary
- University/Tertiary
- Graduate/Advanced
- Industry/Practice
- Research Topics
- LaTeX help
- Math Comptetitions
- Math History
- Math Humor
- PlanetMath Comments
- PlanetMath System Updates and News
- PlanetMath help
- PlanetMath.ORG
- Strategic Communications Development
- The Math Pub
- Testing messages (ignore)

- Other useful stuff

## Recent Activity

new correction: Error in proof of Proposition 2 by alex2907

Jun 24

new question: A good question by Ron Castillo

Jun 23

new question: A trascendental number. by Ron Castillo

Jun 19

new question: Banach lattice valued Bochner integrals by math ias

Jun 13

new question: young tableau and young projectors by zmth

Jun 11

new question: binomial coefficients: is this a known relation? by pfb

Jun 6

new question: difference of a function and a finite sum by pfb