word problem


Let (X;R) be a presentationMathworldPlanetmathPlanetmathPlanetmath for the group G=GpXR. It is well known that G is a quotient groupMathworldPlanetmath of the free monoid with involution on X, i.e. G=(XX-1)/θ for some congruencePlanetmathPlanetmathPlanetmathPlanetmathPlanetmath θ(XX-1)×(XX-1). We recall that R(XX-1) is a set of words all representing the identityPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath 1G of the group, i.e. [r]θ=1G for all rR. The word problem in the category of groups consists in establish whether or not two given words v,w(XX-1) represent the same element of G, i.e. whether or not [v]θ=[w]θ.

Let (X;T) be a presentation for the inverseMathworldPlanetmathPlanetmathPlanetmath monoid M=Inv1XT=(XX-1)/τ, where τ=(ρXT)c. The concept of presentation for inverse monoid is analogous to the group’s one, but now T is a binary relationMathworldPlanetmath on (XX-1), i.e. T(XX-1)×(XX-1). The word problem in the category of inverse monoids consists in establish whether or not two given words v,w(XX-1) represent the same element of M, i.e. whether or not [v]τ=[w]τ.

We can modify the last paragraph to introduce the word problem in the category of inverse semigroups as well.

A classical results in combinatorial group theory says that the word problem in the category of groups is undecidable, so it is undecidable also for the larger categories of inverse semigroups and inverse monoids.

References

  • 1 W. W. Boone, Certain simple unsolvable problems in group theory, I, II, III, IV, V, VI, Nederl. Akad.Wetensch Proc. Ser. A57, 231-237,492- 497 (1954), 58, 252-256,571-577 (1955), 60, 22-27,227-232 (1957).
  • 2 R. Lyndon and P. Schupp, Combinatorial Group Theory, Springer-Verlag, 1977.
  • 3 P.S. Novikov, On the algorithmic unsolvability of the word problem in group theory, Trudy Mat. Inst. Steklov 44, 1-143 (1955).
  • 4 J.B. Stephen, Presentation of inverse monoids, J. Pure Appl. AlgebraMathworldPlanetmathPlanetmath 63 (1990) 81- 112.
Title word problem
Canonical name WordProblem
Date of creation 2013-05-17 17:00:19
Last modified on 2013-05-17 17:00:19
Owner Mazzu (14365)
Last modified by unlord (1)
Numerical id 11
Author Mazzu (1)
Entry type Definition
Classification msc 20M18
Classification msc 20M05
Defines word problem