categories in physics
1 Categories in Physics
This is a relatively new area in mathematical and theoretical physics that is concerned with category theory applications to physics, especially non-Abelian categories and non-Abelian algebraic topology concepts and results in mathematical physics and physical mathematics. Applications range from QFT, AQFT, non-Abelian gauge theories and Quantum Gravity to complex systems, categorical dynamics (http://planetmath.org/CategoricalDynamics), complex categorical dynamics (http://planetmath.org/CategoricalDynamics2), mathematical biophysics and relational biology. Other applications are related to graph theory approaches to Quantum Chemistry.
References
- 1 Brown, Ronald, Higgins, J.P. and Sivera, R. 2011. “Nonabelian Algebraic Topology”, 690 pages, EPS: London and Bruxelles. http://pp-wiki.metameso.org/wiki.pl/NAAT_2011_Book_SummaryNonabelian Algebraic Topology 2011;
- 2 Baez, J. and Dolan, J., 1998b, “Categorification”, Higher Category Theory, Contemporary Mathematics, 230, Providence: AMS, 1–36.
- 3 Baianu, I. and M. Marinescu: 1968, Organismic Supercategories: Towards a Unitary Theory of Systems. Bulletin of Mathematical Biophysics 30, 148-159.
- 4 Baianu, I.C.: 1970, Organismic Supercategories: II. On Multistable Systems. Bulletin of Mathematical Biophysics, 32: 539-561.
- 5 Baianu,I.C.: 1971a, Organismic Supercategories and Qualitative Dynamics of Systems. Bulletin of Mathematical Biophysics, 33 (3), 339–354.
- 6 Baianu, I.C.: 1971b, Categories, Functors and Quantum Algebraic Computations, in P. Suppes (ed.), In Proceed. Fourth Intl. Congress Logic-Mathematics-Philosophy of Science, 14 pages, September 1–4, 1971.
- 7 Baianu, I.C. : Łukasiewicz-Topos Models of Neural Networks, Cell Genome and Interactome Nonlinear Dynamics). CERN Preprint EXT-2004-059. Health Physics and Radiation Effects (June 29, 2004).
- 8 Baianu, I.C. and D. Scripcariu: 1973, On Adjoint Dynamical Systems. The Bulletin of Mathematical Biophysics, 35(4), 475–486.
- 9 Baez, J. & Dolan, J., 2001, From Finite Sets to Feynman Diagrams, in Mathematics Unlimited – 2001 and Beyond, Berlin: Springer, 29–50.
- 10 Baez, J., 1997, An Introduction to n-Categories, in Category Theory and Computer Science, Lecture Notes in Computer Science, 1290, Berlin: Springer-Verlag, 1–33.
- 11 Baianu I. C., Brown R., Georgescu G. and J. F. Glazebrook: 2006, Complex Nonlinear Biodynamics in Categories, Higher Dimensional Algebra and Łukasiewicz-Moisil Topos: Transformations of Neuronal, Genetic and Neoplastic Networks., Axiomathes, 16 Nos. 1-2: 65-122.
- 12 Baianu, I.C. and D. Scripcariu: 1973, On Adjoint Dynamical Systems. Bulletin of Mathematical Biophysics, 35(4): 475-486.
- 13 Baianu, I. C., Glazebrook, J. F. and G. Georgescu: 2004, Categories of Quantum Automata and N-Valued Łukasiewicz Algebras in Relation to Dynamic Bionetworks, (M,R)-Systems and Their Higher Dimensional Algebra, Preprint of Report.
- 14 Brown, R., Higgins, P. J. and R. Sivera,: 2007, Non-Abelian Algebraic Topology, http://www.bangor.ac.uk/ mas010/nonab-t/partI010604.pdfvol.I pdf doc.; http://planetmath.org/?op=getobj&from=lec&id=75Review of Part I and full contents PDF doc.
- 15 R. Brown. 2008. Higher Dimensional Algebra Preprint as pdf and ps docs. at arXiv:math/0212274v6 [math.AT]
- 16 Brown R. and T. Porter: 2003, Category theory and higher dimensional algebra: potential descriptive tools in neuroscience, In: Proceedings of the International Conference on Theoretical Neurobiology, Delhi, February 2003, edited by Nandini Singh, National Brain Research Centre, Conference Proceedings 1: 80-92.
- 17 Chaician, M. and A. Demichev. 1996. Introduction to Quantum Groups, World Scientific .
- 18 Connes, A. 1994. Noncommutative geometry. Academic Press: New York.
- 19 Crane, Louis. 1993. Categorical Physics., 9 pages, http://arxiv.org/PS_cache/hep-th/pdf/9301/9301061v1.pdfwith free download at (“A new mathematical form for the quantum theory of gravity coupled to matter. The motivation is from the connection between CSW TQFT and the Ashtekar variables”).
- 20 Croisot, R. and Lesieur, L. 1963. Algèbre noethérienne non-commutative., Gauthier-Villard: Paris.
- 21 Dieudonné, J. and Grothendieck, A., 1960, [1971], Éléments de Géométrie Algébrique, Berlin: Springer-Verlag.
- 22 Dixmier, J., 1981, Von Neumann Algebras, Amsterdam: North-Holland Publishing Company. [First published in French in 1957: Les Algebres d’Operateurs dans l’Espace Hilbertien, Paris: Gauthier–Villars.]
- 23 M. Durdevich : Geometry of quantum principal bundles I, Commun. Math. Phys. 175 (3) (1996), 457–521.
- 24 M. Durdevich : Geometry of quantum principal bundles II, Rev.Math. Phys. 9 (5) (1997), 531-607.
- 25 Ehresmann, C.: 1952, Structures locales et structures infinitésimales, C.R.A.S. Paris 274: 587-589.
- 26 Ehresmann, C.: 1959, Catégories topologiques et catégories différentiables, Coll. Géom. Diff. Glob. Bruxelles, pp.137-150.
- 27 Ehresmann, C.: 1966, Trends Toward Unity in Mathematics., Cahiers de Topologie et Geometrie Differentielle 8: 1-7.
- 28 Eilenberg, S. and S. Mac Lane.: 1942, Natural Isomorphisms in Group Theory., American Mathematical Society 43: 757-831.
- 29 Eilenberg, S. and S. Mac Lane: 1945, The General Theory of Natural Equivalences, Transactions of the American Mathematical Society 58: 231-294.
- 30 Ezawa,Z.F., G. Tsitsishvilli and K. Hasebe : Noncommutative geometry, extended algebra and Grassmannian solitons in multicomponent Hall systems, (at arXiv:hep–th/0209198).
- 31 Gabriel, P. and N. Popescu: 1964, Caractérisation des catégories abéliennes avec générateurs et limites inductives. , CRAS Paris 258: 4188-4191.
- 32 Galli, A. & Reyes, G. & Sagastume, M., 2000, Completeness Theorems via the Double Dual Functor, Studia Logica, 64, no. 1: 61–81.
- 33 Grothendieck, A. and J. Dieudoné.: 1960, Eléments de geometrie algébrique., Publ. Inst. des Hautes Etudes de Science, 4.
- 34 Kan, D. M., 1958, Adjoint Functors, Transactions of the American Mathematical Society 87, 294-329.
- 35 H. Krips : Measurement in Quantum Theory, The Stanford Encyclopedia of Philosophy (Winter 1999 Edition), Edward N. Zalta (ed.)
- 36 Landsman, N. P. : Compact quantum groupoids, (at arXiv:math–ph/9912006).
- 37 Lawvere, F. W., 1964, An Elementary Theory of the Category of Sets, Proceedings of the National Academy of Sciences U.S.A., 52, 1506–1511.
- 38 Lawvere, F. W., 1965, Algebraic Theories, Algebraic Categories, and Algebraic Functors, Theory of Models, Amsterdam: North Holland, 413–418.
- 39 Lawvere, F. W.: 1966, The Category of Categories as a Foundation for Mathematics., in Proc. Conf. Categorical Algebra- La Jolla., Eilenberg, S. et al., eds. Springer–Verlag: Berlin, Heidelberg and New York., pp. 1-20.
- 40 Lawvere, F. W., 1969b, Adjointness in Foundations, Dialectica, 23: 281–295.
- 41 Lawvere, F. W., 1992, Categories of Space and of Quantity, The Space of Mathematics, Foundations of Communication and Cognition, Berlin: De Gruyter, 14-30.
- 42 Lawvere, F. W., 2002, Categorical Algebra for Continuum Micro-Physics, Journal of Pure and Applied Algebra, 175, no. 1–3, 267–287.
- 43 Li, M. and P. Vitanyi: 1997, An introduction to Kolmogorov Complexity and its Applications, Springer Verlag: New York.
- 44 Löfgren, L.: 1968, An Axiomatic Explanation of Complete Self-Reproduction, Bulletin of Mathematical Biophysics, 30: 317-348.
- 45 K. C. H. Mackenzie : Lie Groupoids and Lie Algebroids in Differential Geometry, LMS Lect. Notes 124, Cambridge University Press, 1987
- 46 MacLane, S.: 1948. Groups, categories, and duality., Proc. Natl. Acad. Sci.U.S.A, 34: 263-267.
- 47 MacLane, S., 1969, Foundations for Categories and Sets, in Category Theory, Homology Theory and their Applications II, Berlin: Springer, 146–164.
- 48 MacLane, S., 1971, Categorical algebra and Set-Theoretic Foundations, in Axiomatic Set Theory, Providence: AMS, 231–240.
- 49 MacLane, S., 1950, Dualities for Groups, Bulletin of the American Mathematical Society, 56, 485-516.
- 50 MacLane, S., 1996, Structure in Mathematics. Mathematical Structuralism., Philosophia Mathematica, 4, 2, 174-183.
- 51 MacLane, S., 1997, Categories for the Working Mathematician, 2nd edition, New York: Springer-Verlag.
- 52 Majid, S.: 1995, Foundations of Quantum Group Theory, Cambridge Univ. Press: Cambridge, UK.
- 53 Majid, S.: 2002, A Quantum Groups Primer, Cambridge Univ.Press: Cambridge, UK.
- 54 May, J.P. 1999, A Concise Course in Algebraic Topology, The University of Chicago Press: Chicago.
- 55 Mc Larty, C., 1994, Category Theory in Real Time, Philosophia Mathematica, 2, no. 1, 36-44.
- 56 Mc Larty, C., 1991, Axiomatizing a Category of Categories, Journal of Symbolic Logic, 56, no. 4, 1243-1260.
- 57 Mitchell, B.: 1965, Theory of Categories, Academic Press:London.
- 58 Ore, O., 1931, Linear equations on non-commutative fields, Ann. Math. 32: 463-477.
- 59 Plymen, R.J. and P. L. Robinson: 1994, Spinors in Hilbert Space, Cambridge Tracts in Math. 114, Cambridge Univ. Press, Cambridge.
- 60 Popescu, N.: 1973, Abelian Categories with Applications to Rings and Modules. New York and London: Academic Press., 2nd edn. 1975. (English translation by I.C. Baianu).
- 61 Pareigis, B., 1970, Categories and Functors, New York: Academic Press.
- 62 Pedicchio, M. C. and Tholen, W., 2004, Categorical Foundations, Cambridge: Cambridge University Press.
- 63 Peirce, B., 1991, Basic Category Theory for Computer Scientists, Cambridge: MIT Press.
- 64 Pradines, J.: 1966, Théorie de Lie pour les groupoides différentiable, relation entre propriétes locales et globales, C. R. Acad Sci. Paris Sér. A 268: 907-910.
- 65 Raptis, I.: 2003, Algebraic quantisation of causal sets, Int. Jour. Theor. Phys. 39: 1233.
- 66 M. A. Rieffel : Group C*–algebras as compact quantum metric spaces, Documenta Math. 7 (2002), 605-651.
- 67 Roberts, J. E.: 2004, More lectures on algebraic quantum field theory, in A. Connes, et al. Noncommutative Geometry, Springer: Berlin and New York.
- 68 Rosen, R.: 1958b, The Representation of Biological Systems from the Standpoint of the Theory of Categories., Bulletin of Mathematical Biophysics 20: 317-341.
- 69 Szabo, R. J.: 2003, Quantum field theory on non-commutative spaces, Phys. Rep. 378: 207–209.
- 70 Várilly, J. C.: 1997, An introduction to noncommutative geometry. (at arXiv:physics/9709045)
- 71 Weinstein, A.: 1996, Groupoids : unifying internal and external symmetry, Notices of the Amer. Math. Soc. 43: 744–752.
- 72 Wess J. and J. Bagger: 1983, Supersymmetry and Supergravity, Princeton University Press: Princeton, NJ.
Title | categories in physics |
---|---|
Canonical name | CategoriesInPhysics |
Date of creation | 2013-03-22 19:19:35 |
Last modified on | 2013-03-22 19:19:35 |
Owner | bci1 (20947) |
Last modified by | bci1 (20947) |
Numerical id | 10 |
Author | bci1 (20947) |
Entry type | Topic |
Classification | msc 20E07 |
Classification | msc 18-01 |
Related topic | CategoricalDynamics |