# cylinder

When a straight line moves in the space without changing its direction, the ruled surface it sweeps is called a (or, in some special cases, simply a cylinder).  Formally, a cylindrical surface $S$ is a ruled surface with the given condition:

If $p,\,q$ are two distinct points in $S$, and $l$ and $m$ are the rulings passing through $p$ and $q$ respectively, then  $l\parallel m$ (this includes the case when  $l=m$).

If the moving line returns to its starting point, the cylindrical surface $S$ is said to be .  In other words, if we take any plane $\pi$ perpendicular    to any of its rulings, and observe the curve $c$ of intersection  of $\pi$ and $S$, then $S$ is if $c$ is a closed curve. Figure 1: A closed cylindrical surface

The solid cylindrical surface and two parallel planes  is a cylinder.  The portion of the surface of the cylinder belonging to the cylindrical surface is called the lateral surface or the mantle of the cylinder and the portions belonging to the planes are the bases of the cylinder.

The bases of any cylinder are congruent.  The line segment  of a generatrix between the planes is a of the cylinder.  All side lines are equally long.  If the side lines are perpendicular to the planes of the bases, one speaks of a right cylinder, otherwise of a skew cylinder.

The perpendicular distance of the planes of the bases is the of the cylinder.  The volume ($V$) of the cylinder equals the product   of the base area ($A$) and the height ($h$):

 $V=Ah$

If the base is a polygon   , the cylinder is called a prism (which is a polyhedron).  The faces of the mantle of a prism are parallelograms  .  If also the bases of a prism are parallelograms, the prism is a parallelepiped.  If the faces of the mantle of a prism are rectangles   , one speaks of a right prism, otherwise of a skew prism.

1. 1.

$P$ has a base that is an $n$-gon;

2. 2.

$P$ has $n+2$ faces;

3. 3.

$P$ has $2n$ vertices;

4. 4.

$P$ has $3n$ edges.

Note.  The notion of the prism (or cylinder) of a polygon in $\mathbb{R}^{3}$ has a higher-dimensional analogue.  Given any polytope $P$, the prism of P is the polytope  $\mbox{Prism}(P):=P\!\times\![0,\,1]$.  The vertices of $\mbox{Prism}(P)$ are the points  $(x,\,0)$ and  $(x,\,1)$, where $x$ over the vertices of $P$.  In other words, we drag $P$ a short distance   through a vector orthogonal   to everything in $P$, just as we would to obtain the prism of a polygon.

 Title cylinder Canonical name Cylinder Date of creation 2013-03-22 15:29:21 Last modified on 2013-03-22 15:29:21 Owner stevecheng (10074) Last modified by stevecheng (10074) Numerical id 12 Author stevecheng (10074) Entry type Topic Classification msc 51M20 Classification msc 51M04 Related topic Parallelotope  Defines cylindrical surface Defines lateral surface Defines mantle Defines base Defines side line Defines right cylinder Defines skew cylinder Defines prism Defines parallelepiped Defines right prism Defines skew prism