bibliography for operator algebras in mathematical physics and AQFT: K-to- Z


0.1 Literature on operator algebras in mathematical physics and algebraic quantum field theories (AQFT):

Alphabetical order: letters from K to Z.

References

  • 1 Kawahigashi, Y., Sato, N. and Wakui, M. (2005). (2+1)-dimensional topological quantum field theory from subfactors and Dehn surgeryMathworldPlanetmath formulaMathworldPlanetmathPlanetmath for 3-manifoldMathworldPlanetmath invariants. Advances in Mathematics, 195, 165-179.
  • 2 Kazhdan, V. and Lusztig, G. (1994). Tensor structuresMathworldPlanetmath arising from affine Lie algebras. IV, Journal of the American Mathematical Society, 7, 383–453.
  • 3 Kirby, R. (1978). A calculus of farmed links in S3. Inventiones Mathematicae, 45, 35–56.
  • 4 Kirby, R. and Melvin, P. (1990). On the 3-manifold invariants of Witten and Reshetikhin–Turaev. Inventiones Mathematicae, 105, 473–545.
  • 5 Kirillov, A. Jr. and Ostrik, V. (2002). On q-analog of McKay correspondence and ADE classification of sl(2) conformal field theories. Advances in Mathematics, 171, 183–227. math.QA/0101219.
  • 6 Kirillov, A. N. and Reshetikhin, N. Yu. (1988). Representations of the algebraMathworldPlanetmathPlanetmath Uq(sl2), q-orthogonal polynomials and invariants for links. Infinite dimensional Lie algebras and groups, (Kač, V. G., ed.), Advanced Series in Mathematical Physics, vol. 7, 285–339.
  • 7 Knizhnik, V. and Zamolodchikov, A. (1984). Current algebra and Weiss-Zumino models in two dimensionsMathworldPlanetmathPlanetmath. Nuclear Physics B, 247, 83–103.
  • 8 Kodiyalam, V. and Sunder, V. S. (2001). Spectra of principal graphs. International Journal of Mathematics, 12, 203–210.
  • 9 Kodiyalam, V. and Sunder, V. S. (2001). Flatness and fusion coefficientsMathworldPlanetmath. Pacific Journal of Mathematics, 201, 177–204.
  • 10 Kodiyalam, V. and Sunder, V. S. (2001). Topological quantum field theories from subfactors. Chapman & Hall/CRC, Research Notes in Mathematics, 423.
  • 11 Kohno, T. (1987). MonodromyMathworldPlanetmath representations of braid groupsMathworldPlanetmath and Yang–Baxter equations. Annales de l’Institut Fourier, Grenoble, 37,4, 139–160.
  • 12 Kohno, T. (1992). Topological invariantsPlanetmathPlanetmath for 3-manifolds using representations of mapping class groupsPlanetmathPlanetmath I. TopologyMathworldPlanetmath, 31, 203–230.
  • 13 Kohno, T. (1992). Three-manifold invariants derived from conformal field theory and projective representations of modular groups. International Journal of Modern Physics, 6, 1795–1805.
  • 14 Kosaki, H. (1986). ExtensionPlanetmathPlanetmathPlanetmathPlanetmath of Jones’ theory on index to arbitrary factors. Journal of Functional AnalysisMathworldPlanetmath, 66, 123–140.
  • 15 Kosaki, H. (1989). Characterization of crossed product (properly infiniteMathworldPlanetmathPlanetmath case). Pacific Journal of Mathematics, 137, 159–167.
  • 16 Kosaki, H. (1990). Index theory for type III factors. in Mappings of operator algebras, Proceedings of U.S.-Japan Seminar, (ed. H. Araki and R. V. Kadison), Birkhäuser, 129–139.
  • 17 Kosaki, H. (1993). AutomorphismsMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath in the irreduciblePlanetmathPlanetmath decompositions of sectors. Quantum and non-commutative analysisMathworldPlanetmath, (ed. H. Araki et al.), Kluwer Academic, 305–316.
  • 18 Kosaki, H. (1994). AFD factor of type III0 with many isomorphic index 3 subfactors. Journal of Operator Theory, 32, 17–29.
  • 19 Kosaki, H. (1994). Some remarks on automorphisms for inclusions of type III factors. in Subfactors — Proceedings of the Taniguchi Symposium, Katata —, (ed. H. Araki, et al.), World Scientific, 153–171.
  • 20 Kosaki, H. (1996). Sector theory and automorphisms for factor-subfactor pairs. Journal of the Mathematical Society of Japan, 48, 427–454.
  • 21 Kosaki, H. and Loi, P. H. (1995). A remark on non-splitting inclusions of type III1 factors. International Journal of Mathematics, 6, 581–586.
  • 22 Kosaki, H. and Longo, R. (1992). A remark on the minimalPlanetmathPlanetmath index of subfactors. Journal of Functional Analysis, 107, 458–470.
  • 23 Kosaki, H., Munemasa, A. and Yamagami, S. (1997). On fusion algebras associated to finite groupMathworldPlanetmath actions. Pacific Journal of Mathematics, bf 177, 269–290.
  • 24 Kosaki, H. and Yamagami, S. (1992). Irreducible bimodules associated with crossed product algebras. International Journal of Mathematics, 3, 661–676.
  • 25 Köster, S. (2002). Conformal transformations as observables. Letters in Mathematical Physics, 61, 187–198.
  • 26 Köster, S. (preprint 2003). Absence of stress energy tensor in CFT2 models. math-ph/0303053.
  • 27 Köster, S. (2004). Local nature of coset models. Reviews in Mathematical Physics, 16, 353–382. math-ph/0303054.
  • 28 Köster, S. (preprint 2003). Structure of coset models. math-ph/0308031.
  • 29 Kostov, I. (1988). Free field presentationMathworldPlanetmathPlanetmathPlanetmath of the An coset models on the torus. Nuclear Physics B, 300, 559–587.
  • 30 Kramers, H. A. and Wannier, G. H. (1941). Statistics of the two dimensional ferromagnet part 1. Physical Review, 60, 252–262.
  • 31 Kuik, R. (1986). On the q-state Potts model by means of non-commutative algebras. Ph.D. Thesis Groningen.
  • 32 Kulish, P. and Reshetikhin, N. (1983). Quantum linear problem for the sine-Gordon equation and higher representations. Journal of Soviet Mathematics, 23, 2435–2441.
  • 33 Kuniba, A., Akutsu, Y. and Wadati, M. (1986). Virasoro algebra, von Neumann algebraMathworldPlanetmathPlanetmathPlanetmath and critical eight vertex SOS model. Journal of Physics Society of Japan, 55, 3285–3288.
  • 34 Landau, Z. (2001). Fuss-Catalan algebras and chains of intermediate subfactors. Pacific Journal of Mathematics, 197, 325–367.
  • 35 Landau, Z. (2002). Exchange relationMathworldPlanetmathPlanetmath planar algebras. Journal of Functional Analysis, 195, 71–88.
  • 36 Lickorish, W. (1988). PolynomialsMathworldPlanetmathPlanetmath for links. Bulletin of the American Mathematical Society, 20, 558–588.
  • 37 Loi, P. H. (1988). On the theory of index and type III factors. Thesis, Pennsylvania State University.
  • 38 Loi, P. H. (1996). On automorphisms of subfactors. Journal of Functional Analysis, 141, 275–293.
  • 39 Loi, P. H. (1994). On the derived tower of certain inclusions of type IIIλ factors of index 4. Pacific Journal of Mathematics, 165, 321–345.
  • 40 Loi, P. H. (1994). Remarks on automorphisms of subfactors. Proceedings of the American Mathematical Society, 121, 523–531.
  • 41 Loi, P. H. (1997). Periodic and strongly free automorphisms on inclusions of type IIIλ factors. International Journal of Mathematics, 8, 83–96.
  • 42 Loi, P. H. (1998). A structural result of irreducible inclusions of type IIIλ factors. Proceedings of the American Mathematical Society, 126, 2651–2662.
  • 43 Loi, P. H. (1998). Commuting squares and the classification of finite depth inclusions of AFD type IIIλ factors, λ(0,1). Publications of the RIMS, Kyoto University, 34, 115–122.
  • 44 Loke, T. (1994). Operator algebras and conformal field theory of the discrete series representations of Diff(S1). Thesis, University of Cambridge.
  • 45 Longo, R. (1978) A simple proof of the existence of modular automorphisms in approximately finite dimensional von Neumann algebras. Pacific Journal of Mathematics, 75, 199–205.
  • 46 Longo, R. (1979). Automatic relative boundedness of derivationsMathworldPlanetmathPlanetmath in C*-algebras. Journal of Functional Analysis, 34, 21–28.
  • 47 Longo, R. (1984). Solution of the factorial Stone-Weierstrass conjecture. An application of the theory of standard split W*-inclusions. Inventiones Mathematicae, 76, 145–155.
  • 48 Longo, R. (1987). Simple injectivePlanetmathPlanetmath subfactors. Advances in Mathematics, 63, 152–171.
  • 49 Longo, R. (1989). Index of subfactors and statistics of quantum fields, I. Communications in Mathematical Physics, 126, 217–247.
  • 50 Longo, R. (1990). Index of subfactors and statistics of quantum fields II. Communications in Mathematical Physics, 130, 285–309.
  • 51 Longo, R. (1992). Minimal index and braided subfactors. Journal of Functional Analysis, 109, 98–112.
  • 52 Longo, R. (1994). A duality for Hopf algebrasMathworldPlanetmathPlanetmath and for subfactors I. Communications in Mathematical Physics, 159, 133–150.
  • 53 Longo, R. (1994). Problems on von Neumann algebras suggested by quantum field theory. in Subfactors — Proceedings of the Taniguchi Symposium, Katata —, (ed. H. Araki, et al.), World Scientific, 233–241.
  • 54 Longo, R. (1997). An analogue of the Kac-Wakimoto formula and black hole conditional entropy. Communications in Mathematical Physics, 186, 451–479.
  • 55 Longo, R. (1999). On the spin-statistics relation for topological charges. in Operator Algebras and Quantum Field Theory (ed. S. Doplicher, et al.), International Press, 661–669.
  • 56 Longo, R. (2001). Notes for a quantum index theorem. Communications in Mathematical Physics, 222, 45–96.
  • 57 Longo, R. (2003). Conformal subnets and intermediate subfactors. Communications in Mathematical Physics, 237, 7–30. math.OA/0102196.
  • 58 Longo, R. and Rehren, K.-H. (1995). Nets of subfactors. Reviews in Mathematical Physics, 7, 567–597.
  • 59 Longo, R. and Rehren, K.-H. (2004). Local fields in boundary CFT. Reviews in Mathematical Physics, 16, 909–960. math-ph/0405067.
  • 60 Longo, R. and Rehren, K.-H. (preprint 2007). How to remove the boundary. arXiv:0712.2140.
  • 61 Longo, R. and Roberts, J. E. (1997). A theory of dimension. K-theory, 11, 103–159.
  • 62 Longo, R. and Xu, F. (2004). Topological sectors and a dichotomy in conformal field theory. Communications in Mathematical Physics, 251, 321–364. math.OA/0309366.
  • 63 Markov, A. (1935). Über de freie Aquivalenz geschlossener Zöpfe. Rossiiskaya Akademiya Nauk, Matematicheskii Sbornik, 1, 73–78.
  • 64 Masuda, T. (1997). An analogue of Longo’s canonical endomorphism for bimodule theory and its application to asymptotic inclusions. International Journal of Mathematics, 8, 249–265.
  • 65 Masuda, T. (1999). Classification of actions of discrete amenable groups on strongly amenable subfactors of type IIIλ. Proceedings of the American Mathematical Society, 127, 2053–2057.
  • 66 Masuda, T. (1999). Classification of strongly free actions of discrete amenable groups on strongly amenable subfactors of type III0. Pacific Journal of Mathematics, 191, 347–357.
  • 67 Masuda, T. (2000). GeneralizationPlanetmathPlanetmath of Longo-Rehren construction to subfactors of infinite depth and amenability of fusion algebras. Journal of Functional Analysis, 171, 53–77.
  • 68 Masuda, T. (2001). Extension of automorphisms of a subfactor to the symmetricMathworldPlanetmathPlanetmathPlanetmath enveloping algebra. International Journal of Mathematics, 12, 637–659.
  • 69 Masuda, T. (in press). Classification of approximately inner actions of discrete amenable groups on strongly amenable subfactors. International Journal of Mathematics,
  • 70 Masuda, T. (2003).Notes on group actionsMathworldPlanetmath on subfactors. Journal of the Mathematical Society of Japan, 55, 1–11.
  • 71 Masuda, T. (2003). On non-strongly free automorphisms of subfactors of type III0. Canadian Mathematical Bulletin, 46, 419–428.
  • 72 Masuda, T. (2005). An analogue of Connes-Haagerup approach to classification of subfactors of type III1. Journal of the Mathematical Society of Japan, 57, 959–1001.
  • 73 McCoy, B. and Wu, T. (1972). The two dimensional Ising model. Harvard University Press, Cambridge, Massachusetts, 40.
  • 74 McDuff, D. (1969). Uncountably many II1 factors. Annals of Mathematics, 90, 372–377.
  • 75 McDuff, D. (1970). Central sequencesPlanetmathPlanetmath and the hyperfinite factor. Proceedings of the London Mathematical Society, 21, 443–461.
  • 76 Moore, G. and Seiberg, N. (1989). Classical and quantum conformal field theory. Communications in Mathematical Physics, 123, 177–254.
  • 77 Moore, G. and Seiberg, N. (1989). Naturality in conformal field theory. Nuclear Physics B, 313, 16–40.
  • 78 Müger, M. (1998). Superselection structure of massive quantum field theories in 1+1 dimensions. Reviews in Mathematical Physics, 10, 1147–1170.
  • 79 Müger, M. (1999). On soliton automorphisms in massive and conformal theories. Reviews in Mathematical Physics, 11, 337–359.
  • 80 Müger, M. (1999). On charged fields with group symmetryMathworldPlanetmath and degeneracies of Verlinde’s matrix S. Annales de l’Institut Henri Poincaré. Physique Théorique, 71, 359–394.
  • 81 Müger, M. (2000). Galois theoryMathworldPlanetmath for braided tensor categories and the modular closureMathworldPlanetmathPlanetmath. Advances in Mathematics, 150, 151–201.
  • 82 Müger, M. (2001). Conformal field theory and Doplicher-Roberts reconstruction. in Mathematical Physics in Mathematics and Physics (ed. R. Longo), The Fields Institute Communications 30, Providence, Rhode Island: AMS Publications, 297–319. math-ph/0008027.
  • 83 Müger, M. (2003). From subfactors to categoriesMathworldPlanetmath and topology I. Frobenius algebras in and Morita equivalence of tensor categories. Journal of Pure and Applied Algebra, 180, 81–157. math.CT/0111204.
  • 84 Müger, M. (2003). From subfactors to categories and topology II. The quantum double of subfactors and categories. Journal of Pure and Applied Algebra, 180, 159–219. math.CT/0111205.
  • 85 Müger, M. (in press). On the structure of modular categories. Proceedings of the London Mathematical Society. math.CT/0201017.
  • 86 Müger, M. (preprint 2002). Galois extensionsMathworldPlanetmath of braided tensor categories and braided crossed G-categories. math.CT/0209093.
  • 87 Müger, M. (2005). Conformal orbifoldMathworldPlanetmath theories and braided crossed G-categories Communications in Mathematical Physics, 260, 727–762. math.QA/0403322.
  • 88 Munemasa, A. and Watatani, Y. (1992). Paires orthogonales de sous-algebres involutives. Comptes Rendus de l’Academie des Sciences, Série I, Mathématiques, 314, 329–331.
  • 89 Murakami, J. (1987). The Kauffman polynomial of lins and representation theory. Osaka Journal of Mathematics, 24, 745–758.
  • 90 Murakami, H. (1994). Quantum SU(2)-invariants dominate Casson’s SU(2)-invariant. Mathematical Proceedings of the Cambridge Philosophical Society, 115, 253–281.
  • 91 Murphy, G. J. (1990). C*-Algebras and Operator Theory. Academic Press Incorporated.
  • 92 Murray, F. J. (1990). The rings of operators. Symposia Mathematica,50, 57–60.
  • 93 Murray, F. J. and von Neumann, J. (1936). On rings of operators. Annals of Mathematics, 37, 116–229.
  • 94 Murray, F. J. and von Neumann, J. (1937). On rings of operators II. Transactions of the American Mathematical Society, 41, 208–248.
  • 95 Murray, F. J. and von Neumann, J. (1943). On rings of operators IV. Annals of Mathematics, 44, 716–808.
  • 96 Nahm, W. (1988). Lie groupMathworldPlanetmath exponentsPlanetmathPlanetmath and SU(2) current algebras. Communications in Mathematical Physics, 118, 171–176.
  • 97 Nahm, W. (1991). A proof of modular invariance. International Journal of Modern Physics, 6, 2837–2845.
  • 98 Nakanishi, T. and Tsuchiya, A. (1992). Level-rank duality of WZW models in conformal field theory. Communications in Mathematical Physics, 144, 351–372.
  • 99 von Neumann, J. (1935). Charakterisierung des Spektrums eines Integral Operators. Act. Sci. et Ind., 229.
  • 100 von Neumann, J. (1940). On Rings of Operators III. Annals of Mathematics, 41, 94–161.
  • 101 von Neumann, J. (1961). Collected works vol. III. Rings of Operators. Pergamon Press.
  • 102 Nikshych, D. and Vainerman, L. (2000). A Galois correspondence for II1 factors and quantum groupoidsPlanetmathPlanetmath. Journal of Functional Analysis, 178, 113–142.
  • 103 Nill, F. and Wiesbrock, H.-W. (1995). A comment on Jones inclusions with infinite index. Reviews in Mathematical Physics, 7, 599–630.
  • 104 Ocneanu, A. (1985). Actions of discrete amenable groups on factors, Lecture Notes in Mathematics 1138, Springer, Berlin.
  • 105 Ocneanu, A. (1988). Quantized group, string algebras and Galois theory for algebras. Operator algebras and applications, Vol. 2 (Warwick, 1987), (ed. D. E. Evans and M. Takesaki), London Mathematical Society Lecture Note Series Vol. 136, Cambridge University Press, 119–172.
  • 106 Ocneanu, A. (1991). Quantum symmetry, differential geometry of finite graphs and classification of subfactors, University of Tokyo Seminary Notes 45, (Notes recorded by Kawahigashi, Y.).
  • 107 Ocneanu, A. (1994). Chirality for operator algebras. (recorded by Kawahigashi, Y.) in Subfactors — Proceedings of the Taniguchi Symposium, Katata —, (ed. H. Araki, et al.), World Scientific, 39–63.
  • 108 Ocneanu, A. (2000). Paths on Coxeter diagrams: from Platonic solidsMathworldPlanetmath and singularities to minimal models and subfactors. (Notes recorded by S. Goto), in Lectures on operator theory, (ed. B. V. Rajarama Bhat et al.), The Fields Institute Monographs, Providence, Rhode Island: AMS Publications, 243–323.
  • 109 Ocneanu, A. (2001). Operator algebras, topology and subgroupsMathworldPlanetmathPlanetmath of quantum symmetry –construction of subgroups of quantum groupsPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath–. (recorded by Goto, S. and Sato, N.) in Taniguchi Conference on Mathematics Nara’98, Advanced Studies in Pure Mathematics 31, (ed. M. Maruyama and T. Sunada), Mathematical Society of Japan, 235–263.
  • 110 Ocneanu, A. (2002). The classification of subgroups of quantum SU(N). in Quantum Symmetries in Theoretical Physics and Mathematics (ed. R. Coquereaux et al.), Comtemp. Math. 294, Amer. Math. Soc., 133–159.
  • 111 Okamoto, S. (1991). Invariants for subfactors arising from Coxeter graphs. Current Topics in Operator Algebras, World Scientific Publishing, 84–103.
  • 112 Onsager, L. (1941). Crystal Statistics I. Physical Review, 65, 117–149.
  • 113 Onsager, L. (1949). Discussion remark (Spontaneous magnetisation of the two-dimensional Ising model. Nuovo Cimento, Supplement, 6, 261–262.
  • 114 Ostrik, V. (preprint 2001). Module categories, weak Hopf algebras and modular invariants. math.RT/0111140.
  • 115 Ostrik, V. (2003). Module categories over the Drinfeld double of a finite group. International Mathematics Research Notices, 1507-1520.
  • 116 Ozawa, N. (in press). No separablePlanetmathPlanetmathPlanetmath II1-factor can contain all separable II1-factors as its subfactors. Proceedings of the American Mathematical Society. math.OA/0210411
  • 117 G. Maltsiniotis.: Groupoi¨des quantiques., C. R. Acad. Sci. Paris, 314: 249 – 252.(1992)
  • 118 J.P. May: A Concise Course in Algebraic Topology. Chicago and London: The Chicago University Press. (1999).
  • 119 B. Mitchell: The Theory of Categories, Academic Press, London, (1965).
  • 120 B. Mitchell: Rings with several objects., Adv. Math. 8: 1 - 161 (1972).
  • 121 B. Mitchell: Separable Algebroids., M. American Math. Soc. 333:10-19 (1985).
  • 122 G. H. Mosa: Higher dimensional algebroids and Crossed complexes, PhD thesis, University of Wales, Bangor, (1986).
  • 123 G. Moultaka, M. Rausch de Traubenberg and A. Tanasă: Cubic supersymmetry and abelain gauge invariance, Internat. J. Modern Phys. A 20 no. 25 (2005), 5779–5806.
  • 124 J. Mrčun : On spectral representation of coalgebras and Hopf algebroids, (2002) preprint.
    http://arxiv.org/abs/math/0208199.
  • 125 P. Muhli, J. Renault and D. Williams: Equivalence and isomorphismMathworldPlanetmathPlanetmathPlanetmath for groupoidPlanetmathPlanetmathPlanetmathPlanetmath C*–algebras., J. Operator Theory, 17: 3-22 (1987).
  • 126 D. A. Nikshych and L. Vainerman: J. Funct. Anal. 171 (2000) No. 2, 278–307
  • 127 H. Nishimura.: Logical quantization of topos theory., International Journal of Theoretical Physics, Vol. 35,(No. 12): 2555–2596 (1996).
  • 128 M. Neuchl, PhD Thesis, University of Munich (1997).
  • 129 V. Ostrik.: Module Categories over Representations of SLq(2) in the Non–simple Case. (2006).
    http://arxiv.org/PS–cache/math/pdf/0509/0509530v2.pdf
  • 130 A. L. T. Paterson: The Fourier-Stieltjes and Fourier algebras for locally compact groupoidsPlanetmathPlanetmath., Contemporary Mathematics 321: 223-237 (2003)
  • 131 R. J. Plymen and P. L. Robinson : Spinors in Hilbert SpaceMathworldPlanetmath. Cambridge Tracts in Math. 114, Cambridge Univ. Press (1994).
  • 132 N. Popescu.: The Theory of Abelian CategoriesMathworldPlanetmathPlanetmathPlanetmath with Applications to Rings and Modules, New York and London: Academic Press (1968).
  • 133 I. Prigogine: From being to becoming: time and complexity in the physical sciences. W. H. Freeman and Co: San Francisco (1980).
  • 134 A. Ramsay: Topologies on measured groupoids., J. Functional Analysis, 47: 314-343 (1982).
  • 135 A. Ramsay and M. E. Walter: Fourier-Stieltjes algebras of locally compact groupoids., J. Functional Analysis, 148: 314-367 (1997).
  • 136 I. Raptis and R. R. Zapatrin : Quantisation of discretized spacetimes and the correspondence principle, Int. Jour.Theor. Phys. 39,(1), (2000).
  • 137 T. Regge.: General relativity without coordinates. Nuovo Cimento (10) 19: 558â @ S571 (1961).
  • 138 H.–K. Rehren: Weak C*–Hopf symmetry, Quantum Group Symposium at Group 21, Proceedings, Goslar (1996, Heron Ptess, Sofia BG : 62–69(1997).
  • 139 J. Renault: A groupoid approach to C*-algebras. Lecture Notes in Maths. 793, Berlin: Springer-Verlag,(1980).
  • 140 J. Renault: Representations de produits croises d’algebres de groupoides. , J. Operator Theory, 18:67-97 (1987).
  • 141 J. Renault: The Fourier algebra of a measured groupoid and its multipliers., J. Functional Analysis, 145: 455-490 (1997).
  • 142 M. A. Rieffel: Group C*–algebras as compactPlanetmathPlanetmath quantum metric spaces, Documenta Math. 7: 605-651 (2002).
  • 143 M. A. Rieffel: Induced representationsMathworldPlanetmath of C*-algebras, Adv. in Math. 13: 176-254 (1974).
  • 144 J. E. Roberts : More lectures on algebraic quantum field theory (in A. Connes, et al., Noncommutative GeometryPlanetmathPlanetmath), Springer: Berlin (2004).
  • 145 J. Roberts.: Skein theory and Turaev-Viro invariants. Topology 34(no.4):771-787(1995).
  • 146 J. Roberts. Refined state-sum invariants of 3- and 4- manifolds. Geometric topology (Athens, GA, 1993), 217-234, AMS/IP Stud. Adv. Math., 2.1, Amer. Math.Soc., Providence, RI,(1997).
  • 147 Rovelli, C.: 1998, Loop Quantum Gravity, in N. Dadhich, et al. Living Reviews in Relativity.
  • 148 Schwartz, L.: Generalisation de la Notion de Fonction, de Derivation, de TransformationMathworldPlanetmathPlanetmath de Fourier et Applications Mathematiques et Physiques, Annales de l’Universite de Grenoble, 21: 57-74 (1945).
  • 149 Schwartz, L.: Théorie des Distributions, Publications de l’Institut de Mathématique de l’Université de Strasbourg, Vols 9-10, Paris: Hermann (1951-1952).
  • 150 A. K. Seda: Haar measures for groupoids, Proc. Roy. Irish Acad. Sect. A 76 No. 5, 25–36 (1976).
  • 151 A. K. Seda: Banach bundles of continuous functionsMathworldPlanetmathPlanetmath and an integralPlanetmathPlanetmath representation theorem, Trans. Amer. Math. Soc. 270 No.1 : 327-332(1982).
  • 152 A. K. Seda: On the Continuity of Haar measures on topological groupoids, Proc. Amer Mat. Soc. 96: 115–120 (1986).
  • 153 I. E. Segal, PostulatesMathworldPlanetmath for General Quantum Mechanics, Annals of Mathematics, 4: 930-948 (1947b).
  • 154 I.E. Segal.: Irreducible Representations of Operator Algebras, Bulletin of the American Mathematical Society, 53: 73-88 (1947a).
  • 155 E.K. Sklyanin: Some Algebraic StructuresPlanetmathPlanetmath Connected with the Yang-Baxter equation, Funct. Anal. Appl., 16: 263–270 (1983).
  • 156 Some Algebraic Structures Connected with the Yang-Baxter equation. Representations of Quantum Algebras, Funct. Anal.Appl., 17: 273-284 (1984).
  • 157 K. Szlachányi: The double algebraic view of finite quantum groupoids, J. Algebra 280 (1) , 249-294 (2004).
  • 158 M. E. Sweedler: Hopf algebras. W.A. Benjamin, INC., New York (1996).
  • 159 A. Tanasă: Extension of the Poincaré symmetry and its field theoretical interpretationMathworldPlanetmath, SIGMA Symmetry Integrability Geom. Methods Appl. 2 (2006), Paper 056, 23 pp. (electronic).
  • 160 J. Taylor, QuotientsPlanetmathPlanetmath of Groupoids by the Action of a Group, Math. Proc. Camb. Phil. Soc., 103, (1988), 239–249.
  • 161 A. P. Tonks, 1993, Theory and applications of crossed complexes, Ph.D. thesis, University of Wales, Bangor.
  • 162 V.G. Turaev and O.Ya. Viro. State sum invariants of 3-manifolds and quantum 6j-symbols. Topology 31 (no. 4): 865-902 (1992).
  • 163 J. C. Várilly: An introduction to noncommutative geometry, (1997) arXiv:physics/9709045
  • 164 E. H. van Kampen, On the Connection Between the Fundamental GroupsMathworldPlanetmath of some Related Spaces, Amer. J. Math., 55, (1933), 261–267.
  • 165 P. Xu.: Quantum groupoids and deformation quantization. (1997) (at arxiv.org/pdf/q–alg/9708020.pdf).
  • 166 D.N. Yetter.: TQFT’s from homotopy 2-types. J. Knot Theor. 2:113-123(1993).
  • 167 S. Weinberg.: The Quantum TheoryPlanetmathPlanetmath of Fields. Cambridge, New York and Madrid: Cambridge University Press, Vols. 1 to 3, (1995–2000).
  • 168 A. Weinstein : Groupoids: unifying internal and external symmetry, Notices of the Amer. Math. Soc. 43 (7): 744–752 (1996).
  • 169 J. Wess and J. Bagger: Supersymmetry and Supergravity, Princeton University Press, (1983).
  • 170 J. Westman: Harmonic analysis on groupoids, Pacific J. Math. 27: 621-632. (1968).
  • 171 J. Westman: Groupoid theory in algebra, topology and analysis., University of California at Irvine (1971).
  • 172 S. Wickramasekara and A. Bohm: Symmetry representations in the rigged Hilbert spaceMathworldPlanetmathPlanetmath formulation of quantum mechanics, J. Phys. A 35 (2002), no. 3, 807-829.
  • 173 Wightman, A. S., 1956, Quantum Field Theory in Terms of Vacuum Expectation Values, Physical Review, 101: 860–866.
  • 174 Wightman, A. S., 1976, Hilbert’s Sixth Problem: Mathematical Treatment of the Axioms of Physics, Proceedings of Symposia in Pure Mathematics, 28: 147–240.
  • 175 Wightman, A.S. and Gårding, L., 1964, Fields as Operator–Valued Distributions in Relativistic Quantum Theory, Arkiv fur Fysik, 28: 129–184.
  • 176 S. L. Woronowicz : Twisted SU(2) group : An example of a non-commutative differential calculus, RIMS, Kyoto University 23 1987), 613-665.
Title bibliography for operator algebras in mathematical physics and AQFT: K-to- Z
Canonical name BibliographyForOperatorAlgebrasInMathematicalPhysicsAndAQFTKtoZ
Date of creation 2013-03-22 18:46:24
Last modified on 2013-03-22 18:46:24
Owner bci1 (20947)
Last modified by bci1 (20947)
Numerical id 6
Author bci1 (20947)
Entry type Bibliography
Classification msc 81Q60
Classification msc 03G12
Classification msc 81R50
Classification msc 47C15
Classification msc 81T70
Classification msc 46L35
Classification msc 46L10
Classification msc 46L05
Classification msc 81T60
Classification msc 81T05