bibliography for operator algebras in mathematical physics and AQFT-A to K
0.1 Bibliography for Operator Algebras in Mathematical Physics and Algebraic Quantum Field Theories (AQFT):
Alphabetical order: Letters from A to K
References
- 1 Akutsu, Y. and Wadati, M. (1987). Knot invariants and critical statistical systems. Journal of the Physics Society of Japan, 56, 839–842.
- 2 Alexander, J. W. (1930). The combinatorial theory of complexes. Annals of Mathematics, (2) 31, 294–322.
- 3 Andrews, G. E., Baxter, R. J. and Forrester, P.J. (1984). Eight vertex SOS model and generalized Rogers–Ramanujan type identities. Journal of Statistical Physics, 35, 193–266.
- 4 Aoi, H. and Yamanouchi, T. (in press). Construction of a canonical subfactor for an inclusion of factors with a common Cartan subalgebra. Hokkaido Mathematical Journal.
- 5 Arcuri, R. C., Gomes, J. F. and D. I. Olive (1987). Conformal subalgebras and symmetric spaces. Nuclear Physics B, 285, 327–339.
- 6 Artin, E. (1947). Theory of braids. Annals of Mathematics, 48 101–126.
- 7 Asaeda, M. (2007). Galois groups and an obstruction to principal graphs of subfactors. International Journal of Mathematics, 18, 191–202. math.OA/0605318.
- 8 Asaeda, M. and Haagerup, U. (1999). Exotic subfactors of finite depth with Jones indices and . Communications in Mathematical Physics, 202, 1–63.
- 9 Asaeda, M. and Yasuda, S. (preprint 2007). On Haagerup’s list of potential principal graphs of subfactors. arXiv:0711.4144.
- 10 Atiyah, M. (1967). -theory. W. A. Benjamin Inc., New York.
- 11 Atiyah, M. (1989). Topological quantum field theory. Publication Mathématiques IHES, 68, 175–186.
- 12 Aubert, P.-L. (1976). Théorie de Galois pour une -algèbre. Commentarii Mathematici Helvetici, 39 (51), 411–433.
- 13 Baez, J. C., Segal, I. E. and Zhou, Z. (1992). Introduction to algebraic and constructive quantum field theory. Princeton University Press.
- 14 Bakalov, B. and Kirillov, A. Jr. (2001). Lectures on tensor categories and modular functors. University Lecture Series 21, Amer. Math. Soc.
- 15 Banica, T. (1997). Le groupe quantique compact libre , Communications in Mathematical Physics, 190, 143–172.
- 16 Banica, T. (1998). Hopf algebras and subfactors associated to vertex models. Journal of Functional Analysis, 159, 243–266.
- 17 Banica, T. (1999). Representations of compact quantum groups and subfactors. Journal für die Reine und Angewandte Mathematik, 509, 167–198.
- 18 Banica, T. (1999). Fusion rules for representations of compact quantum groups. Expositiones Mathematicae, 17, 313–337.
- 19 Banica, T. (1999). Symmetries of a generic coaction. Mathematische Annalen, 314, 763–780.
- 20 Banica, T. (2000). Compact Kac algebras and commuting squares. Journal of Functional Analysis, 176, 80–99.
- 21 Banica, T. (2001). Subfactors associated to compact Kac algebras. Integral Equations Operator Theory, 39, 1–14.
- 22 Banica, T. (2002). Quantum groups and Fuss-Catalan algebras. Communications in Mathematical Physics, 226, 221–232
- 23 Banica, T. (2005). The planar algebra of a coaction. Journal of Operator Theory 53, 119–158.
- 24 Banica, T. (2005). Quantum automorphism groups of homogeneous graphs. Journal of Functional Analysis, 224, 243–280.
- 25 Banica, T. (2005). Quantum automorphism groups of small metric spaces. Pacific Journal of Mathematics, 219, 27–51.
- 26 Baxter, R. J. (1981).Rogers–Ramanujan identities in the Hard Hexagon model. Journal of Statistical Physics, 26, 427–452.
- 27 Baxter, R. J. (1982). Exactly solved models in statistical mechanics. Academic Press, New York.
- 28 Baxter, R. J. (1988). The superintegrable chiral Potts model. Physics Letters A, 133, 185–189.
- 29 Baxter, R. J. (1989). A simple solvable Hamiltonian. Physics Letters A, 140, 155–157.
- 30 Baxter, R. J. (1989). Superintegrable Chiral Potts model: thermodynamic properties, an “inverse” model, and a simple associated Hamiltonian. Journal of Statistical Physics, 57, 1–39.
- 31 Baxter, R. J., Kelland, S. B. and Wu, F. Y. (1976). Potts model or Whitney Polynomial. Journal of Physics. A. Mathematical and General, 9, 397–406.
- 32 Baxter, R. J., Perk, J. H. H. and Au-Yang, H. (1988). New solutions of the star-triangle relations for the chiral Potts model. Physics Letters A 128, 138–142.
- 33 Baxter, R. J., Temperley, H. N. V. and Ashley, S. E. (1978). Triangular Potts model and its transition temperature and related models. Proceedings of the Royal Society of London A, 358, 535–559.
- 34 Behrend, R. E., Evans, D. E. (preprint 2003). Integrable Lattice Models for Conjugate . hep-th/0309068.
- 35 Behrend, R. E., Pearce, P. A., Petkova, V. B. and Zuber, J-B. (2000). Boundary conditions in rational conformal field theories. Nuclear Physics B, 579, 707–773.
- 36 Belavin, A. A., Polyakov, A. M. and Zamolodchikov, A. B. (1980). Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Physics B, 241, 333–380.
- 37 Berezin, F. A. (1966). A method of second quantization. Academic Press, London/New York.
- 38 Bertozzini, P., Conti, R. and Longo, R. (1998) Covariant sectors with infinite dimension and positivity of the energy. Communications in Mathematical Physics, 193, 471–492.
- 39 Bion-Nadal, J. (1992). Subfactor of the hyperfinite factor with Coxeter graph as invariant. Journal of Operator Theory, 28, 27–50.
- 40 Birman, J. (1974). Braids, links and mapping class groups. Annals of Mathematical Studies, 82.
- 41 Birman, J. S. and Wenzl, H. (1989). Braids, link polynomials and a new algebra. Transactions of the American Mathematical Society, 313, 249–273.
- 42 Bisch, D. (1990). On the existence of central sequences in subfactors. Transactions of the American Mathematical Society, 321, 117–128.
- 43 Bisch, D. (1992). Entropy of groups and subfactors. Journal of Functional Analysis, 103, 190–208.
- 44 Bisch, D. (1994). A note on intermediate subfactors. Pacific Journal of Mathematics, 163, 201–216.
- 45 Bisch, D. (1994). On the structure of finite depth subfactors. in Algebraic methods in operator theory, (ed. R. Curto and P. E. T. Jörgensen), Birkhäuser, 175–194.
- 46 Bisch, D. (1994). Central sequences in subfactors II. Proceedings of the American Mathematical Society, 121, 725–731.
- 47 Bisch, D. (1994). An example of an irreducible subfactor of the hyperfinite II factor with rational, non-integer index. Journal für die Reine und Angewandte Mathematik, 455, 21–34.
- 48 Bisch, D. (1997). Bimodules, higher relative commutants and the fusion algebra associated to a subfactor. In Operator algebras and their applications. Fields Institute Communications, Vol. 13, American Math. Soc., 13–63.
- 49 Bisch, D. (1998). Principal graphs of subfactors with small Jones index. Mathematische Annalen, 311, 223–231.
- 50 Bisch, D. (2002). Subfactors and planar algebras. Proc. ICM-2002, Beijing, 2, 775–786.
- 51 Bisch, D. and Haagerup, U. (1996). Composition of subfactors: New examples of infinite depth subfactors. Annales Scientifiques de l’École Normale Superieur, 29, 329–383.
- 52 Bisch, D. and Jones, V. F. R. (1997). Algebras associated to intermediate subfactors. Inventiones Mathematicae, 128, 89–157.
- 53 Bisch, D. and Jones, V. F. R. (1997). A note on free composition of subfactors. In Geometry and Physics, (Aarhus 1995), Marcel Dekker, Lecture Notes in Pure and Applied Mathematics, Vol. 184, 339–361.
- 54 Bisch, D. and Jones, V. F. R. (2000). Singly generated planar algebras of small dimension. Duke Mathematical Journal, 101, 41–75.
- 55 Bisch, D. and Jones, V. F. R. (2003). Singly generated planar algebras of small dimension. II Advances in Mathematics, 175, 297–318.
- 56 Bisch, D., Nicoara, R. and Popa, S. (2007). Continuous families of hyperfinite subfactors with the same standard invariant. International Journal of Mathematics, 18, 255–267. math.OA/0604460.
- 57 Bisch, D. and Popa, S. (1999). Examples of subfactors with property T standard invariant. Geometric and Functional Analysis, 9, 215–225.
- 58 Böckenhauer, J. (1996). An algebraic formulation of level one Wess-Zumino-Witten models. Reviews in Mathematical Physics, 8, 925–947.
- 59 Böckenhauer, J. and Evans, D. E. (1998). Modular invariants, graphs and -induction for nets of subfactors I. Communications in Mathematical Physics, 197, 361–386.
- 60 Böckenhauer, J. and Evans, D. E. (1999). Modular invariants, graphs and -induction for nets of subfactors II. Communications in Mathematical Physics, 200, 57–103.
- 61 Böckenhauer, J. and Evans, D. E. (1999). Modular invariants, graphs and -induction for nets of subfactors III. Communications in Mathematical Physics, 205, 183–228.
- 62 Böckenhauer, J. and Evans, D. E. (2000). Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors. Communications in Mathematical Physics, 213, 267–289.
- 63 Böckenhauer, J. and Evans, D. E. (2002). Modular invariants from subfactors. in Quantum Symmetries in Theoretical Physics and Mathematics (ed. R. Coquereaux et al.), Comtemp. Math. 294, Amer. Math. Soc., 95–131. math.OA/0006114.
- 64 Böckenhauer, J. and Evans, D. E. (2001). Modular invariants and subfactors. in Mathematical Physics in Mathematics and Physics (ed. R. Longo), The Fields Institute Communications 30, Providence, Rhode Island: AMS Publications, 11–37. math.OA/0008056.
- 65 Böckenhauer, J., Evans, D. E. and Kawahigashi, Y. (1999). On -induction, chiral generators and modular invariants for subfactors. Communications in Mathematical Physics, 208, 429–487. math.OA/9904109.
- 66 Böckenhauer, J., Evans, D. E. and Kawahigashi, Y. (2000). Chiral structure of modular invariants for subfactors. Communications in Mathematical Physics, 210, 733–784. math.OA/9907149.
- 67 Böckenhauer, J., Evans, D. E. and Kawahigashi, Y. (2001). Longo-Rehren subfactors arising from -induction. Publications of the RIMS, Kyoto University, 37, 1–35. math.OA/0002154.
- 68 de Boer, J. and Goeree, J. (1991). Markov traces and II factors in conformal field theory. Communications in Mathematical Physics, 139, 267–304.
- 69 Bongaarts, P. J. M. (1970). The electron-positron field, coupled to external electromagnetic potentials as an elementary -algebra theory. Annals of Physics, 56, 108–138.
- 70 Bratteli, O. (1972). Inductive limits of finite dimensional -algebras. Transactions of the American Mathematical Society, 171, 195–234.
- 71 Brunetti, R., Guido, D. and Longo, R. (1993). Modular structure and duality in conformal quantum field theory. Communications in Mathematical Physics, 156, 201–219.
- 72 Brunetti, R., Guido, D. and Longo, R. (1995). Group cohomology, modular theory and space-time symmetries. Reviews in Mathematical Physics, 7 57–71.
- 73 Buchholz, D., Doplicher, S., Longo, R. and Roberts, J. E. (1993). Extensions of automorphisms and gauge symmetries. Communications in Mathematical Physics, 155, 123–134.
- 74 Buchholz, D., Mack, G. and Todorov, I. (1988). The current algebra on the circle as a germ of local field theories. Nuclear Physics B (Proc. Suppl.), B5, 20–56.
- 75 Buchholz, D. and Schulz-Mirbach, H. (1990). Haag duality in conformal quantum field theoery, Reviews in Mathematical Physics, 2 105–125.
- 76 Camp, W., and Nicoara, R. (preprint 2007). Subfactors and Hadamard matrices. arXiv:0704.1128.
- 77 Cappelli, A., Itzykson, C. and Zuber, J.-B. (1987). The -- classification of minimal and conformal invariant theories. Communications in Mathematical Physics, 113, 1–26.
- 78 Carpi, S. (1998). Absence of subsystems for the Haag-Kastler net generated by the energy-momentum tensor in two-dimensional conformal field theory. Letters in Mathematical Physics, 45, 259–267.
- 79 Carpi, S. (2003). The Virasoro algebra and sectors with infinite statistical dimension. Annales Henri Poincaré, 4, 601–611. math.OA/0203027.
- 80 Carpi, S. (2004). On the representation theory of Virasoro nets. Communications in Mathematical Physics, 244, 261–284. math.OA/0306425.
- 81 Carpi, S. (2005). Intersecting Jones projections. International Journal of Mathematics, 16, 687–691. math.OA/0412457.
- 82 Carpi, S. and Conti, R. (2001). Classification of subsystems for local nets with trivial superselection structure. Communications in Mathematical Physics, 217, 89–106.
- 83 Carpi, S. and Conti, R. (2005). Classification of subsystems for graded-local nets with trivial superselection structure. Communications in Mathematical Physics. 253, 423–449. math.OA/0312033.
- 84 Carpi, S., Kawahigashi, Y. and Longo, R. (in press). Structure and classification of superconformal nets. Annales Henri Poincaré. arXiv:0705.3609.
- 85 Carpi, S. and Weiner, M. (2005). On the uniqueness of diffeomorphism symmetry in Conformal Field Theory. Communications in Mathematical Physics, 258, 203–221. math.OA/0407190.
- 86 Ceccherini, T. (1996). Approximately inner and centrally free commuting squares of type factors and their classification. Journal of Functioanl Analysis, 142, 296–336.
- 87 Chen, J. (1993). The Connes invariant and cohomology of groups. Ph. D. dissertation at University of California, Berkeley.
- 88 Choda, M. (1989). Index for factors generated by Jones’ two sided sequence of projections. Pacific Journal of Mathematics, 139, 1–16.
- 89 Choda, M. (1991). Entropy for -endomorphisms and relative entropy for subalgebras. Journal of Operator Theory, 25, 125–140.
- 90 Choda, M. (1992). Entropy for canonical shift. Transactions of the American Mathematical Society, 334, 827–849.
- 91 Choda, M. (1993). Duality for finite bipartite graphs (with applications to II factors). Pacific Journal of Mathematics, 158, 49–65.
- 92 Choda, M. (1994). Square roots of the canonical shifts. Journal of Operator Theory, 31, 145–163.
- 93 Choda, M. (1994). Extension algebras via -endomorphisms. in Subfactors — Proceedings of the Taniguchi Symposium, Katata —, (ed. H. Araki, et al.), World Scientific, 105–128.
- 94 Choda, M. and Hiai, F. (1991). Entropy for canonical shifts. II. Publications of the RIMS, Kyoto University, 27, 461–489.
- 95 Choda, M. and Kosaki, H. (1994). Strongly outer actions for an inclusion of factors. Journal of Functional Analysis, 122, 315–332.
- 96 Christensen, E. (1979). Subalgebras of a finite algebra. Mathematische Annalen, 243, 17–29.
- 97 Combes, F. (1968). Poids sur une -algèbre. Journal de Mathématiques Pures et Appliquées, 47, 57–100.
- 98 Connes, A. (1973). Une classification des facteurs de type III. Annales Scientifiques de l’École Normale Supérieure, 6, 133–252.
- 99 Connes, A. (1975). Outer conjugacy classes of automorphisms of factors. Annales Scientifiques de l’École Normale Supérieure, 8, 383–419.
- 100 Connes, A. (1975). Hyperfinite factors of type III-0 and Krieger’s factors. Journal of Functional Analysis, 18, 318–327.
- 101 Connes, A. (1975). Sur la classification des facteurs de type II. Comptes Rendus de l’Academie des Sciences, Série I, Mathématiques, 281, 13–15.
- 102 Connes, A. (1975). A factor not antiisomorphic to itself. Annals of Mathematics, 101, 536–554.
- 103 Connes, A. (1976). Classification of injective factors. Annals of Mathematics, 104, 73–115.
- 104 Connes, A. (1976). Outer conjugacy of automorphisms of factors. Symposia Mathematica, XX, 149–160.
- 105 Connes, A. (1976). On the classification of von Neumann algebras and their automorphisms. Symposia Mathematica, XX, 435–478.
- 106 Connes, A. (1977). Periodic automorphisms of the hyperfinite factor of type II. Acta Scientiarum Mathematicarum, 39, 39–66.
- 107 Connes, A. (1978). On the cohomology of operator algebras. Journal of Functional Analysis, 28, 248–253.
- 108 Connes, A. (1979). Sur la théorie non commutative de l’integration. Springer Lecture Notes in Math., 725, 19–143.
- 109 Connes, A. (1980). -algebres et geomètrie différentielle. Comptes Rendus de l’Academie des Sciences, Série I, Mathématiques, 559–604.
- 110 Connes, A. (1980). Spatial theory of von Neumann algebras. Journal of Functional Analysis, 35 (1980), 153–164.
- 111 Connes, A. (1981). An analogue of the Thom isomorphism for crossed products of a -algebra by an action of . Advances in Mathematics, 39, 311–355.
- 112 Connes, A. (1982). Foliations and Operator Algebras. Proceedings of Symposia in Pure Mathematics. ed. R. V. Kadison, 38, 521–628.
- 113 Connes, A. (1982). Classification des facteurs. Proceedings of the Symposia in Pure Mathematics (II), 38, 43–109.
- 114 Connes, A. (1985). Non-commutative differential geometry I–II. Publication Mathématiques IHES, 62, 41–144.
- 115 Connes, A. (1985). Factors of type III-1, property and closure of inner automorphisms. Journal of Operator Theory, 14, 189–211.
- 116 Connes, A. (1985). Non Commutative Differential Geometry, Chapter II: De Rham homology and non commutative algebra. Publication Mathématiques IHES, 62, 257–360.
- 117 Connes, A. (1994). Noncommutative geometry. Academic Press.
- 118 Connes, A. and Evans, D. E. (1989). Embeddings of -current algebras in non-commutative algebras of classical statistical mechanics. Communications in Mathematical Physics, 121, 507–525.
- 119 Connes, A. and Higson, N. (1990). Déformations, morphismes asymptotiques et -théorie bivariante. Comptes Rendus de l’ Academie des Sciences, Série I, Mathématiques, 311, 101–106.
- 120 Connes, A. and Karoubi, M. (1988). Caractere multiplicatif d’un module de Fredholm. -theory, 2 431–463.
- 121 Connes, A. and Krieger, W. (1977). Measure space automorphism groups, the normalizer of their full groups, and approximate finiteness. Journal of Functional Analysis, 24, 336–352.
- 122 Connes, A. and Rieffel, M. (1985). Yang-Mills for non-commutative tori. Contemporary Mathematics, 62, 237–265.
- 123 Connes, A. and Skandalis, G. (1984). The longitudinal index theorem for foliations. Publications of the RIMS, Kyoto University, 20, 1139–1183.
- 124 Connes, A. and Störmer, E. (1975). Entropy for automorphisms of von Neumann algebras. Acta Mathematica, 134, 289–306.
- 125 Connes, A. and Takesaki, M. (1977). The flow of weights on factors of type III. Tohoku Mathematical Journal, 29, 73–555.
- 126 Conti, R., Doplicher, S., and Roberts, J. E. (2001). Superselection theory for subsystems. Communications in Mathematical Physics, 218, 263–281.
- 127 Conti, R. and Pinzari, C. (1996). Remarks on the index of endomorphisms of Cuntz algebras. Journal of Functional Analysis, 142, 369–405.
- 128 Coquereaux, R. (2005) The Ocneanu quantum groupoid. in Algebraic structures and their representations, Contemporary Mathematics, 376, 227–247. hep-th/0311151.
- 129 Coquereaux, R. and Schieber, G. (2002). Twisted partition functions for ADE boundary conformal field theories and Ocneanu algebras of quantum symmetries. Journal of Geometry and Physics, 42, 216–258.
- 130 Coquereaux, R. and Schieber, G. (2003). Determination of quantum symmetries for higher ADE systems from the modular T matrix. Journal of Mathematical Physics, 44, 3809–3837. hep-th/0203242. bibitemCn Cuntz, J. (1977). Simple -algebras generated by isometries. Communications in Mathematical Physics, 57, 173–185.
- 131 Cuntz, J. (1981). -theory for certain -algebras. Annals of Mathematics, 113, 181–197.
- 132 Cuntz, J. (1984). -theory and -algebras. Lecture Notes in Mathematics, Springer-Verlag, 1046.
- 133 Cuntz, J. (1981). A class of -algebras and topological Markov chains II. Reducible Markov chains and the functor for -algebras. Inventiones Mathematica, 63, 25–40.
- 134 Cuntz, J. and Krieger, W. (1980). A class of -algebras and topological Markov chains. Inventiones Mathematicae, 56, 251–268.
- 135 Cvetković, D., Doob, M. and Gutman, I. (1982). On graphs whose spectral radius does not exceed . Ars Combinatoria, 14, 225–239.
- 136 D’Antoni, C., Fredenhagen, K. and Köster, S. (preprint 2003). Implementation of conformal covariance by diffeomorphism symmetry. math-ph/0312017.
- 137 D’Antoni, C., Longo, R. and Radulescu, F. (2001). Conformal nets, maximal temperature and models from free probability. Journal of Operator Theory, 45, 195–208.
- 138 Date, E., Jimbo, M., Kuniba, A., Miwa, T. and Okado, M. (1988). Exactly solvable SOS models II: Proof of the star-triangle relation and combinatorial identities. Advanced Studies in Pure Mathematics, 16, 17–122.
- 139 Date, E., Jimbo, M., Miwa, T. and Okado, M. (1987). Solvable lattice models. Theta functions — Bowdoin 1987, Part 1, Proceedings of Symposia in Pure Mathematics Vol. 49, American Mathematical Society, Providence, R.I., pp. 295–332.
- 140 David, M. C. (1996). Paragroupe d’Adrian Ocneanu et algèbre de Kac. Pacific Journal of Mathematics, 172, 331–363.
- 141 Degiovanni, P. (1990). conformal field theories. Communications in Mathematical Physics, 127, 71–99.
- 142 Degiovanni, P. (1992). Moore and Seiberg’s equations and 3D toplogical field theory. 145, 459–505.
- 143 Di Francesco, P. (1992). Integrable lattice models, graphs, and modular invariant conformal field theories. International Journal of Modern Physics A, 7, 407–500.
- 144 Di Francesco, P., Mathieu, P. and Sénéchal, D. (1996). Conformal Field Theory. Springer-Verlag, New York.
- 145 Di Francesco, P., Saleur, H. and Zuber, J.-B. (1987). Modular invariance in non-minimal two-dimensional conformal field theories. Nuclear Physics, B285, 454–480.
- 146 Di Francesco, P. and Zuber, J.-B. (1990). lattice integrable models associated with graphs. Nuclear Physics B, 338, 602–646.
- 147 Di Francesco, P. and Zuber, J.-B. (1990). lattice integrable models and modular invariance. in Recent Developments in Conformal Field Theories, Trieste, 1989, World Scientific, 179–215.
- 148 Dijkgraaf, R., Pasquier, V. and Roche, Ph. (1990). Quasi Hopf algebras, group cohomology and orbifold models. Nuclear Physics B(Proc. Suppl.), 18, 60–72.
- 149 Dijkgraaf, R., Pasquier, V. and Roche, Ph. (1991). Quasi-quantum groups related to orbifold models. Proceedings of the International Colloquium on Modern Quantum Field Theory, World Scientific, Singapore, 375–383.
- 150 Dijkgraaf, R., Vafa, C., Verlinde, E. and Verlinde, H. (1989). The operator algebra of orbifold models. Communications in Mathematical Physics, 123, 485–526.
- 151 Dijkgraaf, R. and Witten, E. (1990). Topological gauge theories and group cohomology. Communications in Mathematical Physics, 129, 393–429.
- 152 Dixmier, J. (1964). Les -algebras et leurs représentations. Gauthier-Villars.
- 153 Dixmier, J. (1967). On some -algebras considered by Glimm. Journal of Functional Analysis, 1, 182–203.
- 154 Dixmier, J. (1969). Les algèbres d’opérateurs dans l’espace Hilbertien. (Algèbres de von Neumann.) 2nd ed. Gauthier Villars, Paris.
- 155 Dixmier, J. (1981). Von Neumann Algebras. North-Holland.
- 156 Dixmier, J. and C. Lance (1969). Deux nouveaux facteurs de type II. Inventiones Mathematicae, 7, 226–234.
- 157 Dixon, L., Harvey, J. A., Vafa, C. and Witten, E. (1985). Strings on orbifolds. Nuclear Physics B, 261, 678–686.
- 158 Dixon, L., Harvey, J. A., Vafa, C. and Witten, E. (1986). Strings on orbifolds. Nuclear Physics B, 274, 285–314.
- 159 Dong, C. and Xu, F. (2006). Conformal nets associated with lattices and their orbifolds. Advances in Mathematics, 206, 279–306. math.OA/0411499.
- 160 Doplicher, S., Haag, R. and Roberts, J. E. (1969). Fields, observables and gauge transformations II. Communications in Mathematical Physics, 15, 173–200.
- 161 Doplicher, S., Haag, R. and Roberts, J. E. (1971, 74). Local obsevables and particle statistics, I,II. Communications in Mathematical Physics, 23, 199–230 and 35, 49–85.
- 162 Doplicher, S. and Longo, R. (1984). Standard and split inclusions of von Neumann algebras. Inventiones Mathematicae, 75, 493–536. bibitemDP Doplicher, S. and , Piacitelli, G. (preprint 2002). Any compact group is a gauge group. hep-th/0204230.
- 163 Doplicher, S., Pinzari, C. and Roberts, J. E. (2001). An algebraic duality theory for multiplicative unitaries. International Journal of Mathematics, 12, 415–459.
- 164 Doplicher, S. and Roberts, J. E. (1989). Endomorphisms of -algebras, cross products and duality for compact groups. Annals of Mathematics, 130, 75–119.
- 165 Doplicher, S. and Roberts, J. E. (1989). A new duality theory for compact groups. Inventiones Mathematica, 98, 157–218.
- 166 Drinfeld, V. G. (1986). Quantum groups. Proc. ICM-86, Berkeley, 798–820.
- 167 Dunford, N. and Schwartz, J. T. (1958). Linear Operators Volume I. Interscience.
- 168 Durhuus, B., Jakobsen, H. P. and Nest, R. (1993). Topological quantum field theories from generalized -symbols. Reviews in Mathematical Physics, 5, 1–67.
- 169 Elliott, G. A. (1976). On the classification of inductive limits of sequences of semisimple finite-dimensional algebras. Journal of Algebra, 38, 29–44.
- 170 Enock, M. (1998). Inclusions irréducibles de facteurs et unitaires multiplicatifs, II. Journal of Functional Analysis, 154, 67–109.
- 171 Enock, M. (1999). Sous-facteurs intermédiaires et groupes quantiques mesurés. Journal of Operator Theory, 42, 305–330.
- 172 Enock, M. (2000). Inclusions of von Neumann algebras and quantum groupoids, II. Journal of Functional Analysis, 178, 156–225.
- 173 Enock, M. and Nest, R. (1996). Irreducible inclusions of factors multiplicative unitaries, and Kac algebras. Journal of Functional Analysis, 137, 466–543.
- 174 Enock, M. and Vallin, J.-M. (2000). Inclusions of von Neumann algebras and quantum groupoids. Journal of Functional Analysis, 172, 249–300.
- 175 Erlijman, J. (1998). New braided subfactors from braid group representations. Transactions of the American Mathematical Society, 350, 185–211.
- 176 Erlijman, J. (2000). Two-sided braid subfactors and asymptotic inclusions. Pacific Journal of Mathematics, 193, 57–78.
- 177 Erlijman, J. (2001). Multi-sided braid subfactors. Canadian Journal of Mathematics, 53, 546–564.
- 178 Evans, D.E. (1984). The -algebras of topological Markov chains. Tokyo Metropolitan University Lecture Notes.
- 179 Evans, D. E. (1985). The -algebras of the two-dimensional Ising model. Springer Lecture Notes in Mathematics, 1136, 162–176.
- 180 Evans, D. E. (1985). Quasi-product states on -algebras. Operator algebras and their connections with topology and ergodic theory, Springer Lecture Notes in Mathematics, 1132, 129–151.
- 181 Evans, D. E. (1990). -algebraic methods in statistical mechanics and field theory. International Journal of Modern Physics B, 4, 1069–1118.
- 182 Evans, D. E. (2002). Fusion rules of modular invariants. Reviews in Mathematical Physics, 14, 709–731. math.OA/0204278
- 183 Evans, D. E. (preprint 2002). Critical phenomena, modular invariants and operator algebras. math.OA/0204281.
- 184 Evans, D. E. and Gould, J. D. (1989). Dimension groups, embeddings and presentations of AF algebras associated to solvable lattice models. Modern Physics Letters A, 20, 1883–1890.
- 185 Evans, D. E. and Gould, J. D. (1994). Dimension groups and embeddings of graph algebras. International Journal of Mathematics, 5, 291–327.
- 186 Evans, D. E. and Gould, J. D. (1994). Presentations of AF algebras associated to -graphs. Publications of the RIMS, Kyoto University, 30, 767–798.
- 187 Evans, D. E. and Kawahigashi, Y. (1993). Subfactors and conformal field theory. in “Quantum and non-commutative analysis”, 341–369, Kluwer Academic.
- 188 Evans, D. E. and Kawahigashi, Y. (1994). Orbifold subfactors from Hecke algebras. Communications in Mathematical Physics, 165, 445–484.
- 189 Evans, D. E. and Kawahigashi, Y. (1994). The commuting squares produce as principal graph. Publications of the RIMS, Kyoto University, 30, 151–166.
- 190 Evans, D. E. and Kawahigashi, Y. (1995). On Ocneanu’s theory of asymptotic inclusions for subfactors, topological quantum field theories and quantum doubles. International Journal of Mathematics, 6, 205–228.
- 191 Evans, D. E. and Kawahigashi, Y. (1995). From subfactors to -dimensional topological quantum field theories and back — a detailed account of Ocneanu’s theory —. International Journal of Mathematics, 6, 537–558.
- 192 Evans, D. E. and Kawahigashi, Y. (1998). Orbifold subfactors from Hecke algebras II —Quantum doubles and braiding—. Communications in Mathematical Physics, 196, 331–361.
- 193 Evans, D. E. and Kawahigashi, Y. (1998). Quantum symmetries on operator algebras. Oxford University Press.
- 194 Evans, D. E. and Pinto, P. R. (2003). Subfactor realisation of modular invariants. Communications in Mathematical Physics, 237, 309–363. math.OA/0309174.
- 195 Evans, D. E. and Pinto, P. R. (preprint 2003). Modular invariants and their fusion rules. math.OA/0309175
- 196 Evans, D. E. and Pinto, P. R. (preprint 2004). Modular invariants and the double of the Haagerup subfactor.
- 197 Fack, T. and Marèchal, O (1979). Sur la classification des symètries des -algébres UHF. Canadian Journal of Mathematics, 31, 496–523.
- 198 Fack, T. and Marèchal, O. (1981). Sur la classification des automorphisms pèriodiques des -algébres UHF. Journal of Functional Analysis, 40, 267–301.
- 199 Felder, F., Fröhlich, J. and Keller, G. (1990). On the structure of unitary conformal field theory. II. Representation-theoretic approach. Communications in Mathematical Physics, 130, 1–49.
- 200 Fendley, P. (1989). New exactly solvable orbifold models. Journal of Physics A, 22, 4633–4642.
- 201 Fendley, P. and Ginsparg, P. (1989). Non-critical orbifolds. Nuclear Physics B, 324, 549–580.
- 202 Fenn, R. and Rourke, C. (1979). On Kirby’s calculus of links. Topology, 18, 1–15.
- 203 Fidaleo, F. and Isola, T. (preprint 1996). The canonical endomorphism for infinite index inclusions.
- 204 Fredenhagen, K. (1994). Superselection sectors with infinite statistical dimension. in Subfactors — Proceedings of the Taniguchi Symposium, Katata —, (ed. H. Araki, et al.), World Scientific, 242–258.
- 205 Fredenhagen, K. and Jörß, M. (1996). Conformal Haag-Kastler nets, pointlike localized fields and the existence of operator product expansion. Communications in Mathematical Physics, 176 (1996) 541–554.
- 206 Fredenhagen, K., Rehren, K.-H. and Schroer, B. (1989). Superselection sectors with braid group statistics and exchange algebras. Communications in Mathematical Physics, 125, 201–226.
- 207 Fredenhagen, K., Rehren, K.-H. and Schroer, B. (1992). Superselection sectors with braid group statistics and exchange algebras II. Reviews in Mathematical Physics (special issue), 113–157.
- 208 Freyd, P., Yetter, D.; Hoste, J.; Lickorish, W., Millet, K.; and Ocneanu, A. (1985). A new polynomial invariant of knots and links. Bulletin of the American Mathematical Society, 12, 239–246.
- 209 Friedan, D., Qui, Z. and Shenker, S. (1984). Conformal invariance, unitarity and critical exponents in two dimensions. Physical Review Letters, 52, 1575–1578.
- 210 Fröhlich, J. (1987). Statistics of fields, the Yang–Baxter equation and the theroy of knots and links. Proceedings of Cargèse, ed. G.’t Hooft et al.
- 211 Fröhlich, J. (1988). The Statistics of Fields, the Yang–Baxter Equation, and the Theory of Knots and Links. In “Non-Pert. Quantum Field Theory”, G. ’tHooft et al. (ed.), Plenum. (Cargese Lectures, 1987).
- 212 Fröhlich, J. and Gabbiani, F. (1990). Braid statistics in local quantum theory. Reviews in Mathematical Physics, 2, 251–353.
- 213 Fröhlich, J. and Kerler, T. (1993). Quantum groups, quantum categories and quantum field theory. Lecture Notes in Mathematics, 1542, Springer.
- 214 Fröhlich, J. and King, C. (1989). The Chern–Simons theory and knot polynomials. Communications in Mathematical Physics, 126, 167–199.
- 215 Fröhlich, J. and King, C. (1989). Two-dimensional conformal field theory and three-dimensional topology. International Journal of Modern Physics A, 4, 5321–5399.
- 216 Fröhlich, J. and Marchetti, P.-A. (1988). Quantum field theory of anyons. Letters in Mathematical Physics, 16, 347–358.
- 217 Fröhlich, J. and Marchetti, P.-A. (1989). Quantum field theories of vortices and anyons. Communications in Mathematical Physics, 121, 177–223.
- 218 Fuchs, J. (1992). Affine Lie algebras and quantum groups. Cambridge University Press.
- 219 Fuchs, J., Runkel, I. and Schweigert, C. (2002). TFT construction of RCFT correlators I: Partition functions. Nuclear Physics B, 646, 353–497. hep-th/0204148.
- 220 Fuchs, J. and Schweigert, C. (2000). Solitonic sectors, alpha-induction and symmetry breaking boundaries. Physics Letters, B490, 163–172. hep-th/0006181.
- 221 Fuchs, J. and Schweigert, C. (preprint 2001). Category theory for conformal boundary conditions. math.CT/0106050.
- 222 Gabbiani, F. and Fröhlich, J. (1993). Operator algebras and conformal field theory. Communications in Mathematical Physics, 155, 569–640.
- 223 Gannon, T. (1993). WZW commutants, lattices and level – one partition functions. Nuclear Physics B, 396, 708–736.
- 224 Gannon, T. (1994). The classification of affine modular invariant partition functions. Communications in Mathematical Physics, 161, 233–264.
- 225 Gannon, T. and Ho-Kim, Q. (1994). The rank-four heterotic modular invariant partition functions. Nuclear Physics B, 425, 319–342.
- 226 Gantmacher, F. R. (1960). The theory of matrices. Vol. 2. Chelsea.
- 227 Ge, L. and Popa, S. (1998). On some decomposition properties for factors of type II. Duke Mathematical Journal, 94, 79–101.
- 228 Gepner, D. and Witten, E. (1986). String theory on group manifolds. Nuclear Physics B, 278, 493–549.
- 229 Gnerre, S. (2000). Free compositions of paragroups. Journal of Functional Analysis, 175, 251–278.
- 230 Goddard, P., Kent, A. and Olive, D. (1986). Unitary representations of the Virasoro and super-Virasoro algebras. Communications in Mathematical Physics, 103, 105–119.
- 231 Goddard, P., Nahm, W. and Olive, D. (1985). Symmetric spaces, Sugawara’s energy momentum tensor in two dimensions and free Fermions. Physics Letters, 160B, 111–116.
- 232 Goddard, P. and Olive, D. (1988). Kac–Moody and Virasoro algebras. Advanced Series in Mathematical Physics, 3, World Scientific.
- 233 Goldman, M. (1960). On subfactors of type II. The Michigan Mathematical Journal, 7, 167–172.
- 234 Goldschmidt, D. M. and Jones, V. F. R. (1989) Metaplectic link invariants. Geometriae Dedicata, 31, 165–191.
- 235 Goodman, F., de la Harpe, P. and Jones, V. F. R. (1989). Coxeter graphs and towers of algebras. MSRI Publications (Springer), 14.
- 236 Goodman, F. and Wenzl, H. (1990). Littlewood Richardson coefficients for Hecke algebras at roots of unity. Advances in Mathematics, 82, 244–265.
- 237 Goto, S. (1994). Orbifold construction for non-AFD subfactors. International Journal of Mathematics, 5, 725–746.
- 238 Goto, S. (1995). Symmetric flat connections, triviality of Loi’s invariant, and orbifold subfactors. Publications of the RIMS, Kyoto University, 31, 609–624.
- 239 Goto, S. (1996). Commutativity of automorphisms of subfactors modulo inner automorphisms. Proceedings of the American Mathematical Society, 124, 3391–3398.
- 240 Goto, S. (2000). Quantum double construction for subfactors arising from periodic commuting squares. Journal of the Mathematical Society of Japan, 52, 187–198.
- 241 Greenleaf, F. P. (1969). Invariant means on topological groups and their applications, van Nostrand, New York.
- 242 Grossman, P. (preprint 2006). Forked Temperley-Lieb algebras and intermediate subfactors. math.OA/0607335.
- 243 Grossman, P., and Izumi, M. (2008). Classification of noncommuting quadrilaterals of factors. International Journal of Mathematics, 19, 557–643. arXiv:0704.1121.
- 244 Grossman, P. and Jones, V. F. R. (2007). Intermediate subfactors with no extra structure. Journal of the American Mathematical Society, 20, 219–265. math.OA/0412423.
- 245 Guido, D. and Longo, R. (1992). Relativistic invariance and charge conjugation in quantum field theory. Communications in Mathematical Physics, 148, 521—551.
- 246 Guido, D. and Longo, R. (1995). An algebraic spin and statistics theorem. Communications in Mathematical Physics, 172, 517–533.
- 247 Guido, D. and Longo, R. (1996). The conformal spin and statistics theorem. Communications in Mathematical Physics, 181, 11–35.
- 248 Guido, D. and Longo, R. (in press). A converse Hawking-Unruh effect and dS/CFT correspondance. Annales Henri Poincaré. gr-qc/0212025.
- 249 Guido, D., Longo, R. and Wiesbrock, H.-W. (1998). Extensions of conformal nets and superselection structures. Communications in Mathematical Physics, 192, 217–244.
- 250 Guido, D., Longo, R., Roberts, J. E. and Verch, R. (2001). Charged sectors, spin and statistics in quantum field theory on curved spacetimes. Reviews in Mathematical Physics, 13, 125–198.
- 251 Guionnet, A., Jones, V. F. R., Shlyakhtenko, D. (preprint 2007). Random matrices, free probability, planar algebras and subfactors. arXiv:0712.2904.
- 252 Haag, R. (1996). Local Quantum Physics. Springer-Verlag, Berlin-Heidelberg-New York.
- 253 Haag, R and Kastler, T. (1964). An algebraic approach to quantum field theory. Journal of Mathematical Physics, 5, 848–861.
- 254 Haagerup, U. (1975). Normal weights on -algebras. Journal of Functional Analysis, 19, 302–317.
- 255 Haagerup, U. (1983). All nuclear -algebras are amenable. Inventiones Mathematica, 74, 305–319.
- 256 Haagerup, U. (1987). Connes’ bicentralizer problem and the uniqueness of the injective factor of type . Acta Mathematica, 158, 95–148.
- 257 Haagerup, U. (preprint 1991). Quasi-traces on exact –algebras are traces.
- 258 Haagerup, U. (1994). Principal graphs of subfactors in the index range . in Subfactors -Proceedings of the Taniguchi Symposium, Katata -, (ed. H. Araki, et al.), World Scientific, 1–38.
- 259 Haagerup, U. and Störmer, E. (1990). Equivalences of normal states on von Neumann algebras and the flow of weights. Advances in Mathematics 83, 180–262.
- 260 Haagerup, U. and Störmer, E. (1990). Pointwise inner automorphisms of von Neumann algebras (with an appendix by Sutherland, C. E.). Journal of Functional Analysis, 92, 177–201.
- 261 Haagerup, U. and Winslöw, C. (1998). The Effros–Maréchal topology in the space of von Neumann algebras. American Journal of Mathematics, 120, 567–617.
- 262 Haagerup, U. and Winslöw, C. (2000). The Effros–Maréchal topology in the space of von Neumann algebras, II. Journal of Functional Analysis, 171, 401–431.
- 263 Hamachi, T. and Kosaki, H. (1988). Index and flow of weights of factors of type III. Proceedings of the Japan Academy, 64A, 11–13.
- 264 Hamachi, T. and Kosaki, H. (1988). Inclusions of type III factors constructed from ergodic flows. Proceedings of the Japan Academy, 64A, 195–197.
- 265 Hamachi, T. and Kosaki, H. (1993). Orbital factor map. Ergodic Theory and Dynamical Systems, 13, 515–532.
- 266 de la Harpe, P. (1979). Moyennabilité du groupe unitaire et propriété P de Schwartz des algèbres de von Neumann. Algèbres d’opérateurs (Séminaire, Les Plans-sur-Bex, Suisse 1978) (editor, P. de la Harpe), Lecture Notes in Mathematics, Springer-Verlag, 725, 220–227.
- 267 de la Harpe, P. and Wenzl, H. (1987). Operations sur les rayons spectraux de matrices symetriques entieres positives. Comptes Rendus de l’Academie des Sciences, Série I, Mathématiques, 305, 733–736.
- 268 Havet, J.-F. (1976). Espérance conditionnelles permutables à un group d’automorphismes sur une algèbre de von Neumann. Comptes Rendus de l’Academie des Sciences, Série I, Mathématiques, 282 (1976), 1095–1098..
- 269 Havet, J.-F. (1990). Espérance conditionnelle minimale. Journal of Operator Theory, 24, 33–35.
- 270 Hayashi, T. (1993). Quantum group symmetry of partition functions of IRF models and its application to Jones’ index theory. Communications in Mathematical Physics, 157, 331–345.
- 271 Hayashi, T. (1996). Compact quantum groups of face type. Publications of the RIMS, Kyoto University, 32, 351–369.
- 272 Hayashi, T. (1998). Faes algebras I. A generalization of quantum group theory. Journal of the Mathematical Society of Japan, 50, 293–315.
- 273 Hayashi, T. (1999). Face algebras and unitarity of SU-TQFT. Communications in Mathematical Physics, 203, 211-247.
- 274 Hayashi, T. (1999). Galois quantum groups of II-subfactors. Tôhoku Mathematical Journal, 51, 365–389.
- 275 Hayashi, T. (2000). Harmonic function spaces of probability measures on fusion algebras. Publications of the RIMS, Kyoto University, 36, 231–252.
- 276 Hayashi, T. and Yamagami, S. (2000). Amenable tensor categories and their realizations as AFD bimodules. Journal of Functional Analysis, 172, 19–75.
- 277 Herman, R. H. and Ocneanu, A. (1984). Stability for integer actions on UHF -algebras. Journal of Functional Analysis, 59, 132–144.
- 278 Hiai, F. (1988). Minimizing indices of conditional expectations onto a subfactor. Publications of the RIMS, Kyoto University, 24, 673–678.
- 279 Hiai, F. (1990). Minimum index for subfactors and entropy I. Journal of Operator Theory, 24, 301–336.
- 280 Hiai, F. (1991). Minimum index for subfactors and entropy, II. Journal of the Mathematical Society of Japan, 43, 347–380.
- 281 Hiai, F. (1994). Entropy and growth for derived towers of subfactors. in Subfactors — Proceedings of the Taniguchi Symposium, Katata —, (ed. H. Araki, et al.), World Scientific, 206–232.
- 282 Hiai, F. (1995). Entropy for canonical shifts and strong amenability. International Journal of Mathematics, 6, 381–396.
- 283 Hiai, F. (1997). Standard invariants for crossed products inclusions of factors. Pacific Journal of Mathematics, 177, 237–267.
- 284 Hiai, F. and Izumi, M. (1998). Amenability and strong amenability for fusion algebras with applications to subfactor theory. International Journal of Mathematics, 9, 669–722.
- 285 Hislop, P. and Longo, R. (1982). Modular structure of the local algebras associated with the free massless scalar field theory. Communications in Mathematical Physics, 84 (1982) 71–85.
- 286 Hofman, A. J. (1972). On limit points of spectral radii of non-negative symmetric integral matrices. Lecture Notes in Mathematics, 303, Springer Verlag, 165–172.
- 287 Ikeda, K. (1998). Numerical evidence for flatness of Haagerup’s connections. Journal of the Mathematical Sciences, University of Tokyo, 5, 257–272.
- 288 Ishikawa, H. and Tani, T. (preprint 2002). Novel construction of boundary states in coset conformal field theories. hep-th/0207177.
- 289 Izumi, M. (1991). Application of fusion rules to classification of subfactors. Publications of the RIMS, Kyoto University, 27, 953–994.
- 290 Izumi, M. (1992). Goldman’s type theorem for index 3. Publications of the RIMS, Kyoto University, 28, 833–843.
- 291 Izumi, M. (1993). On type III and type II principal graphs for subfactors. Mathematica Scandinavica, 73, 307–319.
- 292 Izumi, M. (1993). Subalgebras of infinite -algebras with finite Watatani indices I. Cuntz algebras. Communications in Mathematical Physics, 155, 157–182.
- 293 Izumi, M. (1994). On flatness of the Coxeter graph . Pacific Journal of Mathematics, 166, 305–327.
- 294 Izumi, M. (1994). Canonical extension of endomorphisms of factors. in Subfactors — Proceedings of the Taniguchi Symposium, Katata —, (ed. H. Araki, et al.), World Scientific, 274–293.
- 295 Izumi, M. (1998). Subalgebras of infinite -algebras with finite Watatani indices II: Cuntz-Krieger algebras. Duke Mathematical Journal, 91, 409–461.
- 296 Izumi, M. (1999). Actions of compact quantum groups on operator algebras. in XIIth International Congress of Mathematical Physics, International Press, 249–253.
- 297 Izumi, M. (2000). The structure of sectors associated with Longo-Rehren inclusions I. General theory. Communications in Mathematical Physics, 213, 127–179.
- 298 Izumi, M. (2001). The structure of sectors associated with Longo-Rehren inclusions II. Examples. Reviews in Mathematical Physics, 13, 603–674.
- 299 Izumi, M. (2002). Non-commutative Markov operators arising from subfactors. Advances in Mathematics, 169, 1–57.
- 300 Izumi, M. (2003). Canonical extension of endomorphisms of type III factors. American Journal of Mathematics, 125, 1–56.
- 301 Izumi, M. (2002). Inclusions of simple -algebras. Journal für die Reine und Angewandte Mathematik, 547, 97–138.
- 302 Izumi, M. (2002). Characterization of isomorphic group-subgroup subfactors. International Mathematics Research Notices, 1791–1803.
- 303 Izumi, M. and Kawahigashi, Y. (1993). Classification of subfactors with the principal graph . Journal of Functional Analysis, 112, 257–286.
- 304 Izumi, M. and Kosaki, H. (1996). Finite dimensional Kac algebras arising from certain group actions on a factor. International Mathematics Research Notices, 357–370.
- 305 Izumi, M. and Kosaki, H. (2002). Kac algebras arising from composition of subfactors: General theory and classification. Memoirs of the American Mathematical Society, 158, no. 750.
- 306 Izumi, M. and Kosaki, H. (2002). On a subfactor analogue of the second cohomology. Reviews in Mathematical Physics, 14, 733–757.
- 307 Izumi, M., Longo, R. and Popa, S. (1998). A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras. Journal of Functional Analysis, 155, 25–63.
- 308 Jimbo, M. (1986). A -difference analogue of and the Yang-Baxter equation. Letters in Mathematical Physics, 102, 537–567.
- 309 Jimbo, M. (1986). A -analogue of , Hecke algebra and the Yang-Baxter equation. Letters in Mathematical Physics, 11, 247–252.
- 310 Jimbo, M., T, Miwa and Okado, M. (1987). Solvable lattice models whose states are dominant integral weights of . Letters in Mathematical Physics, 14, 123–131.
- 311 Jimbo, M., T, Miwa and Okado, M. (1988). Solvable lattice models related to the vector representation of classical simple Lie algebras. Communications in Mathematical Physics, 116, 507–525.
- 312 Jones, V. F. R. (1980). A factor anti-isomorphic to itself but without involutory anti-automorphisms. Mathematica Scandinavica, 46, 103–117.
- 313 Jones, V. F. R. (1980). Actions of finite groups on the hyperfinite type II factor. Memoirs of the American Mathematical Society, 237.
- 314 Jones, V. F. R. (1983). Index for subfactors. Inventiones Mathematicae, 72, 1–25.
- 315 Jones, V. F. R. (1985). A polynomial invariant for knots via von Neumann algebras. Bulletin of the American Mathematical Society, 12, 103–112.
- 316 Jones, V. F. R. (1986). A new knot polynomial and von Neumann algebras. Notices of the American Mathematical Society, 33, 219–225.
- 317 Jones, V. F. R. (1986). Braid groups, Hecke algebras and type II factors. (1986). in Geometric Methods in Operator Algebras, ed. H. Araki and E. G. Effros., Longman, 242–273.
- 318 Jones, V. F. R. (1987). Hecke algebra representations of braid groups and link polynomials. Annals of Mathematics, 126, 335–388.
- 319 Jones, V. F. R. (1989). On a certain value of the Kauffman polynomial. Communications in Mathematical Physics, 125, 459–467.
- 320 Jones, V. F. R. (1989). On knot invariants related to some statistical mechanical models. Pacific Journal of Mathematics, 137, 311–334.
- 321 Jones, V. F. R. (1990). Knots, braids and statistical mechanics. in Advances in differential geometry and topology, 149–184.
- 322 Jones, V. F. R. (1990). Baxterization. International Journal of Modern Physics B, 4, 701–713.
- 323 Jones, V. F. R. (1990). Notes on subfactors and statistical mechanics. International Journal of Modern Physics A, 5, 441–460.
- 324 Jones, V. F. R. (1991). von Neumann algebras in mathematics and physics. Proceedings of ICM-90, 121–138, Springer.
- 325 Jones, V. F. R. (1991). Subfactors and knots. CBMS Regional Conference Series in Mathematics, 80.
- 326 Jones, V. F. R. (1992). From quantum theory to knot theory and back: a von Neumann algebra excursion. in American Mathematical Society centennial publications, Vol. II, 321–336.
- 327 Jones, V. F. R. (1994). The Potts model and the symmetric group. in Subfactors — Proceedings of the Taniguchi Symposium, Katata —, (ed. H. Araki, et al.), World Scientific, 259–267.
- 328 Jones, V. F. R. (1994). On a family of almost commuting endomorphisms. Journal of Functional Analysis, 119, 84–90.
- 329 Jones, V. F. R. (1995). Fusion en algèbres de von Neumann et groupes de lacets (d’après A. Wassermann). Seminaire Bourbaki, 800, 1–20.
- 330 Jones, V. F. R. (in press). Planar algebras I. New Zealand Journal of Mathematics. math.QA/9909027.
- 331 Jones, V. F. R. (2000). Ten problems. in Mathematics: frontiers and perspectives, Amer. Math. Soc., 79–91.
- 332 Jones, V. F. R. (2000). The planar algebras of a bipartite graph. in Knots in Hellas ’98, World Scientific, 94–117.
- 333 Jones, V. F. R. (2001). The annular structure of subfactors. in Essays on geometry and related topics, Monographies de L’Enseignement Matheḿatique, 38, 401–463.
- 334 Jones, V. F. R. (preprint 2003). In and around the origin of quantum groups. math.OA/0309199.
- 335 Jones, V. F. R. (preprint 2003). Quadratic tangles in planar algebras.
- 336 Jones, V. F. R. and Sunder, V. S. (1997). Introduction to subfactors. London Math. Soc. Lecture Notes Series 234, Cambridge University Press.
- 337 Jones, V. F. R. and Takesaki, M. (1984). Actions of compact abelian groups on semifinite injective factors. Acta Mathematica, 153, 213–258.
- 338 Jones, V. F. R. and Wassermann, A. (in preparation). Fermions on the circle and representations of loop groups.
- 339 Jones, V. F. R. and Xu, F. (2004). Intersections of finite families of finite index subfactors. International Journal of Mathematics, 15, 717–733. math.OA/0406331.
- 340 Kac, V. (1990). Infinite dimensional Lie algebras. 3ème édition, Cambridge University Press.
- 341 Kac, V., Longo, R. and Xu, F. (2004). Solitons in affine and permutation orbifolds. Communications in Mathematical Physics, 253, 723–764. math.OA/0312512.
- 342 Kač, V. and Petersen, D. H. (1984). Infinite dimensional Lie algebras, theta functions, and modular forms. Advances in Mathematics, 53, 125–264.
- 343 Kač, V. and Raina, A. K. (1987). Highest weight representations of infinite dimensional Lie algebras. World Scientific.
- 344 Kadison, R. V. and Ringrose, J. R. (1983). Fundamentals of the Theory of Operator Algebras Vol I. Academic Press.
- 345 Kadison, R. V. and Ringrose, J. R. (1986). Fundamentals of the Theory of Operator Algebras Vol II. Academic Press.
- 346 Kajiwara, T., Pinzari, C., and Watatani, Y. (2004). Jones index theory for Hilbert -bimodules and its equivalence with conjugation theory. Journal of Functional Analysis, 215, 1–49. math.OA/0301259
- 347 Kallman, R. R. (1971). Groups of inner automorphisms of von Neumann algebras. Journal of Functional Analysis, 7, 43–60.
- 348 Karowski, M. (1987). Conformal quantum field theories and integrable theories. Proceedings of the Brasov Summer School, September 1987, ed. P. Dita et al., Academic Press.
- 349 Karowski, M. (1988). Finite size corrections for integrable systems and conformal properties of six-vertex models. Nuclear Physics B, 300, 473–499.
- 350 Kastler D. (1990). (editor) The algebraic theory of Superselection sectors. Introduction and recent results. World Scientific, Singapore.
- 351 Kato, A. (1987). Classification of modular invariant partition functions in two dimensions. Modern Physics Letters A, 2, 585–600.
- 352 Kauffman, L. H. (1986). Chromatic polynomial, Potts model, Jones polynomial Lecture notes.
- 353 Kauffman, L. (1987). State models and the Jones polynomial. Topology, 26, 395–407.
- 354 Kauffman, L. (1990). An invariant of regular isotopy. Transactions of the American Mathematical Society, 318, 417–471.
- 355 Kauffman, L. (1991). Knots and Physics. World Scientific, Singapore.
- 356 Kauffman, L. and Lins, S. L. (1994). Temperley–Lieb recoupling theory and invariants of -manifolds. Princeton University Press, Princeton.
- 357 Kawahigashi, Y. (1992). Automorphisms commuting with a conditional expectation onto a subfactor with finite index. Journal of Operator Theory, 28, 127–145.
- 358 Kawahigashi, Y. (1992). Exactly solvable orbifold models and subfactors. Functional Analysis and Related Topics, Lecture Notes in Mathematics, Springer, 1540, 127–147.
- 359 Kawahigashi, Y. (1993). Centrally trivial automorphisms and an analogue of Connes’s for subfactors. Duke Mathematical Journal, 71, 93–118.
- 360 Kawahigashi, Y. (1994). Paragroup and their actions on subfactors. in Subfactors — Proceedings of the Taniguchi Symposium, Katata —, (ed. H. Araki, et al.), World Scientific, 64–84.
- 361 Kawahigashi, Y. (1995). On flatness of Ocneanu’s connections on the Dynkin diagrams and classification of subfactors. Journal of Functional Analysis, 127, 63–107.
- 362 Kawahigashi, Y. (1995). Orbifold subfactors, central sequences and the relative Jones invariant . International Mathematical Research Notices, 129–140.
- 363 Kawahigashi, Y. (1995). Classification of paragroup actions on subfactors. Publications of the RIMS, Kyoto University, 31, 481–517.
- 364 Kawahigashi, Y. (1996). Paragroups as quantized Galois groups of subfactors. Sugaku Expositions, 9, 21–35.
- 365 Kawahigashi, Y. (1997). Classification of approximately inner automorphisms of subfactors. Mathematische Annalen, 308, 425–438.
- 366 Kawahigashi, Y. (1997). Quantum doubles and orbifold subfactors. in Operator Algebras and Quantum Field Theory (ed. S. Doplicher, et al.), International Press, 271–283.
- 367 Kawahigashi, Y. (1998). Subfactors and paragroup theory. in Operator Algebras and Operator Theory (ed. L. Ge, et al.), Contemporary Mathematics, 228, 179–188.
- 368 Kawahigashi, Y. (1999). Quantum Galois correspondence for subfactors. Journal of Functional Analysis, 167, 481–497.
- 369 Kawahigashi, Y. (2004). Braiding and nets of factors on the circle. in Operator Algebras and Applications (ed. H. Kosaki), Advanced Studies in Pure Mathematics 38, 219–228.
- 370 Kawahigashi, Y. (2001). Braiding and extensions of endomorphisms of subfactors. in Mathematical Physics in Mathematics and Physics (ed. R. Longo), The Fields Institute Communications 30, Providence, Rhode Island: AMS Publications, 261–269.
- 371 Kawahigashi, Y. (2002). Generalized Longo-Rehren subfactors and -induction. Communications in Mathematical Physics, 226, 269–287. math.OA/0107127.
- 372 Kawahigashi, Y. (2003). Conformal quantum field theory and subfactors. Acta Mathematica Sinica, 19, 557–566.
- 373 Kawahigashi, Y. (2003). Classification of operator algebraic conformal field theories. “Advances in Quantum Dynamics”, Contemporary Mathematics, 335, 183–193. math.OA/0211141.
- 374 Kawahigashi, Y. (2005). Subfactor theory and its applications — operator algebras and quantum field theory —. “Selected Papers on Differential Equations”, Amer. Math. Soc. Transl. 215, Amer. Math. Soc., 97–108.
- 375 Kawahigashi, Y. (2005). Topological quantum field theories and operator algebras. Quantum Field Theory and Noncommutative Geometry, Lecture Notes in Physics, Springer, 662, 241–253. math.OA/0306112.
- 376 Kawahigashi, Y. (2005). Classification of operator algebraic conformal field theories in dimensions one and two. XIVth International Congress on Mathematical Physics, World Scientific, 476–485. math-ph/0308029.
- 377 Kawahigashi, Y. (preprint 2007). Conformal field theory and operator algebras. arXiv:0704.0097.
- 378 Kawahigashi, Y. (preprint 2007). Superconformal field theory and operator algebras.
- 379 Kawahigashi, Y. and Longo, R. (2004). Classification of Local Conformal Nets. Case . Annals of Mathematics, 160, 493–522. math-ph/0201015.
- 380 Kawahigashi, Y. and Longo, R. (2004). Classification of two-dimensional local conformal nets with and 2-cohomology vanishing for tensor categories. Communications in Mathematical Physics, 244, 63–97. math-ph/0304022.
- 381 Kawahigashi, Y. and Longo, R. (2005).Noncommutative spectral invariants and black hole entropy. Communications in Mathematical Physics, 257, 193–225. math-ph/0405037.
- 382 Kawahigashi, Y. and Longo, R. (2006). Local conformal nets arising from framed vertex operator algebras. Advances in Mathematics, 206, 729–751. math.OA/0407263.
- 383 Kawahigashi, Y., Longo, R. and Müger, M. (2001). Multi-interval subfactors and modularity of representations in conformal field theory. Communications in Mathematical Physics, 219, 631–669. math.OA/9903104.
- 384 Kawahigashi, Y., Longo, R., Pennig, U. and Rehren, K.-H. (2007). The classification of non-local chiral CFT with . Communications in Mathematical Physics, 271, 375–385. math.OA/0505130.
Title | bibliography for operator algebras in mathematical physics and AQFT-A to K |
Canonical name | BibliographyForOperatorAlgebrasInMathematicalPhysicsAndAQFTAToK |
Date of creation | 2013-03-22 18:46:14 |
Last modified on | 2013-03-22 18:46:14 |
Owner | bci1 (20947) |
Last modified by | bci1 (20947) |
Numerical id | 10 |
Author | bci1 (20947) |
Entry type | Bibliography |
Classification | msc 81Q60 |
Classification | msc 03G12 |
Classification | msc 81R50 |
Classification | msc 81T70 |
Classification | msc 47C15 |
Classification | msc 46L35 |
Classification | msc 46L10 |
Classification | msc 46L05 |
Classification | msc 81T60 |
Classification | msc 81T05 |