bibliography for operator algebras in mathematical physics and AQFT-A to K


0.1 Bibliography for Operator Algebras in Mathematical Physics and Algebraic Quantum Field Theories (AQFT):

Alphabetical order: Letters from A to K

References

  • 1 Akutsu, Y. and Wadati, M. (1987). Knot invariants and critical statistical systems. Journal of the Physics Society of Japan, 56, 839–842.
  • 2 Alexander, J. W. (1930). The combinatorial theory of complexes. Annals of Mathematics, (2) 31, 294–322.
  • 3 Andrews, G. E., Baxter, R. J. and Forrester, P.J. (1984). Eight vertex SOS model and generalized Rogers–Ramanujan type identitiesPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath. Journal of Statistical Physics, 35, 193–266.
  • 4 Aoi, H. and Yamanouchi, T. (in press). Construction of a canonical subfactor for an inclusion of factors with a common Cartan subalgebraMathworldPlanetmath. Hokkaido Mathematical Journal.
  • 5 Arcuri, R. C., Gomes, J. F. and D. I. Olive (1987). Conformal subalgebrasMathworldPlanetmathPlanetmathPlanetmathPlanetmath and symmetric spaces. Nuclear Physics B, 285, 327–339.
  • 6 Artin, E. (1947). Theory of braids. Annals of Mathematics, 48 101–126.
  • 7 Asaeda, M. (2007). Galois groups and an obstruction to principal graphs of subfactors. International Journal of Mathematics, 18, 191–202. math.OA/0605318.
  • 8 Asaeda, M. and Haagerup, U. (1999). Exotic subfactors of finite depth with Jones indices (5+13)/2 and (5+17)/2. Communications in Mathematical Physics, 202, 1–63.
  • 9 Asaeda, M. and Yasuda, S. (preprint 2007). On Haagerup’s list of potential principal graphs of subfactors. arXiv:0711.4144.
  • 10 Atiyah, M. (1967). K-theory. W. A. Benjamin Inc., New York.
  • 11 Atiyah, M. (1989). Topological quantum field theory. Publication Mathématiques IHES, 68, 175–186.
  • 12 Aubert, P.-L. (1976). Théorie de Galois pour une W*-algèbre. Commentarii Mathematici Helvetici, 39 (51), 411–433.
  • 13 Baez, J. C., Segal, I. E. and Zhou, Z. (1992). Introduction to algebraicMathworldPlanetmath and constructive quantum field theory. Princeton University Press.
  • 14 Bakalov, B. and Kirillov, A. Jr. (2001). Lectures on tensor categories and modular functors. University Lecture Series 21, Amer. Math. Soc.
  • 15 Banica, T. (1997). Le groupe quantique compactPlanetmathPlanetmath libre U(n), Communications in Mathematical Physics, 190, 143–172.
  • 16 Banica, T. (1998). Hopf algebrasMathworldPlanetmathPlanetmathPlanetmath and subfactors associated to vertex models. Journal of Functional Analysis, 159, 243–266.
  • 17 Banica, T. (1999). RepresentationsPlanetmathPlanetmath of compact quantum groups and subfactors. Journal für die Reine und Angewandte Mathematik, 509, 167–198.
  • 18 Banica, T. (1999). Fusion rules for representations of compact quantum groups. Expositiones Mathematicae, 17, 313–337.
  • 19 Banica, T. (1999). SymmetriesMathworldPlanetmathPlanetmathPlanetmath of a genericPlanetmathPlanetmathPlanetmath coaction. Mathematische Annalen, 314, 763–780.
  • 20 Banica, T. (2000). Compact Kac algebrasMathworldPlanetmathPlanetmath and commuting squares. Journal of Functional Analysis, 176, 80–99.
  • 21 Banica, T. (2001). Subfactors associated to compact Kac algebras. Integral Equations Operator Theory, 39, 1–14.
  • 22 Banica, T. (2002). Quantum groupsPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath and Fuss-Catalan algebras. Communications in Mathematical Physics, 226, 221–232
  • 23 Banica, T. (2005). The planar algebra of a coaction. Journal of Operator Theory 53, 119–158.
  • 24 Banica, T. (2005). Quantum automorphism groupsMathworldPlanetmath of homogeneousPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath graphs. Journal of Functional Analysis, 224, 243–280.
  • 25 Banica, T. (2005). Quantum automorphism groups of small metric spaces. Pacific Journal of Mathematics, 219, 27–51.
  • 26 Baxter, R. J. (1981).Rogers–Ramanujan identities in the Hard Hexagon model. Journal of Statistical Physics, 26, 427–452.
  • 27 Baxter, R. J. (1982). Exactly solved models in statistical mechanics. Academic Press, New York.
  • 28 Baxter, R. J. (1988). The superintegrable chiral Potts model. Physics Letters A, 133, 185–189.
  • 29 Baxter, R. J. (1989). A simple solvablePlanetmathPlanetmath Z4(N) HamiltonianPlanetmathPlanetmath. Physics Letters A, 140, 155–157.
  • 30 Baxter, R. J. (1989). Superintegrable Chiral Potts model: thermodynamic properties, an “inverseMathworldPlanetmathPlanetmathPlanetmathPlanetmath” model, and a simple associated Hamiltonian. Journal of Statistical Physics, 57, 1–39.
  • 31 Baxter, R. J., Kelland, S. B. and Wu, F. Y. (1976). Potts model or Whitney PolynomialMathworldPlanetmathPlanetmath. Journal of Physics. A. Mathematical and General, 9, 397–406.
  • 32 Baxter, R. J., Perk, J. H. H. and Au-Yang, H. (1988). New solutions of the star-triangle relations for the chiral Potts model. Physics Letters A 128, 138–142.
  • 33 Baxter, R. J., Temperley, H. N. V. and Ashley, S. E. (1978). Triangular Potts model and its transition temperature and related models. Proceedings of the Royal Society of London A, 358, 535–559.
  • 34 Behrend, R. E., Evans, D. E. (preprint 2003). Integrable Lattice Models for ConjugatePlanetmathPlanetmathPlanetmath An(1). hep-th/0309068.
  • 35 Behrend, R. E., Pearce, P. A., Petkova, V. B. and Zuber, J-B. (2000). Boundary conditions in rational conformal field theories. Nuclear Physics B, 579, 707–773.
  • 36 Belavin, A. A., Polyakov, A. M. and Zamolodchikov, A. B. (1980). InfiniteMathworldPlanetmath conformal symmetry in two-dimensional quantum field theory. Nuclear Physics B, 241, 333–380.
  • 37 Berezin, F. A. (1966). A method of second quantization. Academic Press, London/New York.
  • 38 Bertozzini, P., Conti, R. and Longo, R. (1998) Covariant sectors with infinite dimensionMathworldPlanetmathPlanetmathPlanetmath and positivity of the energy. Communications in Mathematical Physics, 193, 471–492.
  • 39 Bion-Nadal, J. (1992). Subfactor of the hyperfinite II1 factor with Coxeter graph E6 as invariantMathworldPlanetmath. Journal of Operator Theory, 28, 27–50.
  • 40 Birman, J. (1974). Braids, links and mapping class groupsPlanetmathPlanetmath. Annals of Mathematical Studies, 82.
  • 41 Birman, J. S. and Wenzl, H. (1989). Braids, link polynomials and a new algebra. Transactions of the American Mathematical Society, 313, 249–273.
  • 42 Bisch, D. (1990). On the existence of centralPlanetmathPlanetmath sequencesMathworldPlanetmathPlanetmath in subfactors. Transactions of the American Mathematical Society, 321, 117–128.
  • 43 Bisch, D. (1992). Entropy of groups and subfactors. Journal of Functional Analysis, 103, 190–208.
  • 44 Bisch, D. (1994). A note on intermediate subfactors. Pacific Journal of Mathematics, 163, 201–216.
  • 45 Bisch, D. (1994). On the structureMathworldPlanetmath of finite depth subfactors. in Algebraic methods in operator theory, (ed. R. Curto and P. E. T. Jörgensen), Birkhäuser, 175–194.
  • 46 Bisch, D. (1994). Central sequences in subfactors II. Proceedings of the American Mathematical Society, 121, 725–731.
  • 47 Bisch, D. (1994). An example of an irreduciblePlanetmathPlanetmath subfactor of the hyperfinite II1 factor with rational, non-integer index. Journal für die Reine und Angewandte Mathematik, 455, 21–34.
  • 48 Bisch, D. (1997). Bimodules, higher relative commutants and the fusion algebra associated to a subfactor. In Operator algebras and their applications. Fields Institute Communications, Vol. 13, American Math. Soc., 13–63.
  • 49 Bisch, D. (1998). Principal graphs of subfactors with small Jones index. Mathematische Annalen, 311, 223–231.
  • 50 Bisch, D. (2002). Subfactors and planar algebras. Proc. ICM-2002, Beijing, 2, 775–786.
  • 51 Bisch, D. and Haagerup, U. (1996). CompositionMathworldPlanetmathPlanetmath of subfactors: New examples of infinite depth subfactors. Annales Scientifiques de l’École Normale Superieur, 29, 329–383.
  • 52 Bisch, D. and Jones, V. F. R. (1997). Algebras associated to intermediate subfactors. Inventiones Mathematicae, 128, 89–157.
  • 53 Bisch, D. and Jones, V. F. R. (1997). A note on free composition of subfactors. In GeometryMathworldPlanetmath and Physics, (Aarhus 1995), Marcel Dekker, Lecture Notes in Pure and Applied Mathematics, Vol. 184, 339–361.
  • 54 Bisch, D. and Jones, V. F. R. (2000). Singly generated planar algebras of small dimension. Duke Mathematical Journal, 101, 41–75.
  • 55 Bisch, D. and Jones, V. F. R. (2003). Singly generated planar algebras of small dimension. II Advances in Mathematics, 175, 297–318.
  • 56 Bisch, D., Nicoara, R. and Popa, S. (2007). ContinuousPlanetmathPlanetmath families of hyperfinite subfactors with the same standard invariant. International Journal of Mathematics, 18, 255–267. math.OA/0604460.
  • 57 Bisch, D. and Popa, S. (1999). Examples of subfactors with property T standard invariant. Geometric and Functional Analysis, 9, 215–225.
  • 58 Böckenhauer, J. (1996). An algebraic formulation of level one Wess-Zumino-Witten models. Reviews in Mathematical Physics, 8, 925–947.
  • 59 Böckenhauer, J. and Evans, D. E. (1998). Modular invariants, graphs and α-inductionMathworldPlanetmath for nets of subfactors I. Communications in Mathematical Physics, 197, 361–386.
  • 60 Böckenhauer, J. and Evans, D. E. (1999). Modular invariants, graphs and α-induction for nets of subfactors II. Communications in Mathematical Physics, 200, 57–103.
  • 61 Böckenhauer, J. and Evans, D. E. (1999). Modular invariants, graphs and α-induction for nets of subfactors III. Communications in Mathematical Physics, 205, 183–228.
  • 62 Böckenhauer, J. and Evans, D. E. (2000). Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors. Communications in Mathematical Physics, 213, 267–289.
  • 63 Böckenhauer, J. and Evans, D. E. (2002). Modular invariants from subfactors. in Quantum Symmetries in Theoretical Physics and Mathematics (ed. R. Coquereaux et al.), Comtemp. Math. 294, Amer. Math. Soc., 95–131. math.OA/0006114.
  • 64 Böckenhauer, J. and Evans, D. E. (2001). Modular invariants and subfactors. in Mathematical Physics in Mathematics and Physics (ed. R. Longo), The Fields Institute Communications 30, Providence, Rhode Island: AMS Publications, 11–37. math.OA/0008056.
  • 65 Böckenhauer, J., Evans, D. E. and Kawahigashi, Y. (1999). On α-induction, chiral generatorsPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath and modular invariants for subfactors. Communications in Mathematical Physics, 208, 429–487. math.OA/9904109.
  • 66 Böckenhauer, J., Evans, D. E. and Kawahigashi, Y. (2000). Chiral structure of modular invariants for subfactors. Communications in Mathematical Physics, 210, 733–784. math.OA/9907149.
  • 67 Böckenhauer, J., Evans, D. E. and Kawahigashi, Y. (2001). Longo-Rehren subfactors arising from α-induction. Publications of the RIMS, Kyoto University, 37, 1–35. math.OA/0002154.
  • 68 de Boer, J. and Goeree, J. (1991). Markov traces and II1 factors in conformal field theory. Communications in Mathematical Physics, 139, 267–304.
  • 69 Bongaarts, P. J. M. (1970). The electron-positron field, coupled to external electromagnetic potentials as an elementary C*-algebra theory. Annals of Physics, 56, 108–138.
  • 70 Bratteli, O. (1972). Inductive limits of finite dimensional C*-algebras. Transactions of the American Mathematical Society, 171, 195–234.
  • 71 Brunetti, R., Guido, D. and Longo, R. (1993). Modular structure and duality in conformal quantum field theory. Communications in Mathematical Physics, 156, 201–219.
  • 72 Brunetti, R., Guido, D. and Longo, R. (1995). Group cohomologyMathworldPlanetmathPlanetmathPlanetmath, modular theory and space-time symmetries. Reviews in Mathematical Physics, 7 57–71.
  • 73 Buchholz, D., Doplicher, S., Longo, R. and Roberts, J. E. (1993). ExtensionsPlanetmathPlanetmathPlanetmath of automorphismsMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath and gauge symmetries. Communications in Mathematical Physics, 155, 123–134.
  • 74 Buchholz, D., Mack, G. and Todorov, I. (1988). The current algebra on the circle as a germ of local fieldMathworldPlanetmath theories. Nuclear Physics B (Proc. Suppl.), B5, 20–56.
  • 75 Buchholz, D. and Schulz-Mirbach, H. (1990). Haag duality in conformal quantum field theoery, Reviews in Mathematical Physics, 2 105–125.
  • 76 Camp, W., and Nicoara, R. (preprint 2007). Subfactors and Hadamard matricesMathworldPlanetmath. arXiv:0704.1128.
  • 77 Cappelli, A., Itzykson, C. and Zuber, J.-B. (1987). The A-D-E classification of minimalPlanetmathPlanetmath and A1(1) conformal invariant theories. Communications in Mathematical Physics, 113, 1–26.
  • 78 Carpi, S. (1998). Absence of subsystems for the Haag-Kastler net generated by the energy-momentum tensor in two-dimensional conformal field theory. Letters in Mathematical Physics, 45, 259–267.
  • 79 Carpi, S. (2003). The Virasoro algebra and sectors with infinite statistical dimension. Annales Henri Poincaré, 4, 601–611. math.OA/0203027.
  • 80 Carpi, S. (2004). On the representation theory of Virasoro nets. Communications in Mathematical Physics, 244, 261–284. math.OA/0306425.
  • 81 Carpi, S. (2005). Intersecting Jones projectionsPlanetmathPlanetmathPlanetmath. International Journal of Mathematics, 16, 687–691. math.OA/0412457.
  • 82 Carpi, S. and Conti, R. (2001). Classification of subsystems for local nets with trivial superselection structure. Communications in Mathematical Physics, 217, 89–106.
  • 83 Carpi, S. and Conti, R. (2005). Classification of subsystems for graded-local nets with trivial superselection structure. Communications in Mathematical Physics. 253, 423–449. math.OA/0312033.
  • 84 Carpi, S., Kawahigashi, Y. and Longo, R. (in press). Structure and classification of superconformal nets. Annales Henri Poincaré. arXiv:0705.3609.
  • 85 Carpi, S. and Weiner, M. (2005). On the uniqueness of diffeomorphismMathworldPlanetmath symmetry in Conformal Field Theory. Communications in Mathematical Physics, 258, 203–221. math.OA/0407190.
  • 86 Ceccherini, T. (1996). Approximately inner and centrally free commuting squares of type II1 factors and their classification. Journal of Functioanl Analysis, 142, 296–336.
  • 87 Chen, J. (1993). The Connes invariant χ(M) and cohomology of groups. Ph. D. dissertation at University of California, Berkeley.
  • 88 Choda, M. (1989). Index for factors generated by Jones’ two sided sequence of projections. Pacific Journal of Mathematics, 139, 1–16.
  • 89 Choda, M. (1991). Entropy for *-endomorphisms and relative entropy for subalgebras. Journal of Operator Theory, 25, 125–140.
  • 90 Choda, M. (1992). Entropy for canonical shift. Transactions of the American Mathematical Society, 334, 827–849.
  • 91 Choda, M. (1993). Duality for finite bipartite graphsMathworldPlanetmath (with applications to II1 factors). Pacific Journal of Mathematics, 158, 49–65.
  • 92 Choda, M. (1994). Square roots of the canonical shifts. Journal of Operator Theory, 31, 145–163.
  • 93 Choda, M. (1994). Extension algebras via *-endomorphisms. in Subfactors — Proceedings of the Taniguchi Symposium, Katata —, (ed. H. Araki, et al.), World Scientific, 105–128.
  • 94 Choda, M. and Hiai, F. (1991). Entropy for canonical shifts. II. Publications of the RIMS, Kyoto University, 27, 461–489.
  • 95 Choda, M. and Kosaki, H. (1994). Strongly outer actions for an inclusion of factors. Journal of Functional Analysis, 122, 315–332.
  • 96 Christensen, E. (1979). Subalgebras of a finite algebra. Mathematische Annalen, 243, 17–29.
  • 97 Combes, F. (1968). Poids sur une C*-algèbre. Journal de Mathématiques Pures et Appliquées, 47, 57–100.
  • 98 Connes, A. (1973). Une classification des facteurs de type III. Annales Scientifiques de l’École Normale Supérieure, 6, 133–252.
  • 99 Connes, A. (1975). Outer conjugacy classesMathworldPlanetmath of automorphisms of factors. Annales Scientifiques de l’École Normale Supérieure, 8, 383–419.
  • 100 Connes, A. (1975). Hyperfinite factors of type III-0 and Krieger’s factors. Journal of Functional Analysis, 18, 318–327.
  • 101 Connes, A. (1975). Sur la classification des facteurs de type II. Comptes Rendus de l’Academie des Sciences, Série I, Mathématiques, 281, 13–15.
  • 102 Connes, A. (1975). A factor not antiisomorphic to itself. Annals of Mathematics, 101, 536–554.
  • 103 Connes, A. (1976). Classification of injectivePlanetmathPlanetmath factors. Annals of Mathematics, 104, 73–115.
  • 104 Connes, A. (1976). Outer conjugacy of automorphisms of factors. Symposia Mathematica, XX, 149–160.
  • 105 Connes, A. (1976). On the classification of von Neumann algebrasMathworldPlanetmathPlanetmath and their automorphisms. Symposia Mathematica, XX, 435–478.
  • 106 Connes, A. (1977). Periodic automorphisms of the hyperfinite factor of type II1. Acta Scientiarum Mathematicarum, 39, 39–66.
  • 107 Connes, A. (1978). On the cohomologyMathworldPlanetmath of operator algebras. Journal of Functional Analysis, 28, 248–253.
  • 108 Connes, A. (1979). Sur la théorie non commutativePlanetmathPlanetmathPlanetmath de l’integration. Springer Lecture Notes in Math., 725, 19–143.
  • 109 Connes, A. (1980). C*-algebres et geomètrie différentielle. Comptes Rendus de l’Academie des Sciences, Série I, Mathématiques, 559–604.
  • 110 Connes, A. (1980). Spatial theory of von Neumann algebras. Journal of Functional Analysis, 35 (1980), 153–164.
  • 111 Connes, A. (1981). An analogue of the Thom isomorphism for crossed products of a C*-algebra by an action of 𝐑. Advances in Mathematics, 39, 311–355.
  • 112 Connes, A. (1982). Foliations and Operator Algebras. Proceedings of Symposia in Pure Mathematics. ed. R. V. Kadison, 38, 521–628.
  • 113 Connes, A. (1982). Classification des facteurs. Proceedings of the Symposia in Pure Mathematics (II), 38, 43–109.
  • 114 Connes, A. (1985). Non-commutative differential geometry I–II. Publication Mathématiques IHES, 62, 41–144.
  • 115 Connes, A. (1985). Factors of type III-1, property Lλ and closureMathworldPlanetmathPlanetmathPlanetmath of inner automorphisms. Journal of Operator Theory, 14, 189–211.
  • 116 Connes, A. (1985). Non Commutative Differential Geometry, Chapter II: De Rham homologyMathworldPlanetmathPlanetmath and non commutative algebra. Publication Mathématiques IHES, 62, 257–360.
  • 117 Connes, A. (1994). Noncommutative geometryPlanetmathPlanetmath. Academic Press.
  • 118 Connes, A. and Evans, D. E. (1989). EmbeddingsMathworldPlanetmathPlanetmath of U(1)-current algebras in non-commutative algebras of classical statistical mechanics. Communications in Mathematical Physics, 121, 507–525.
  • 119 Connes, A. and Higson, N. (1990). Déformations, morphismes asymptotiques et K-théorie bivariante. Comptes Rendus de l’ Academie des Sciences, Série I, Mathématiques, 311, 101–106.
  • 120 Connes, A. and Karoubi, M. (1988). Caractere multiplicatif d’un module de Fredholm. K-theory, 2 431–463.
  • 121 Connes, A. and Krieger, W. (1977). Measure space automorphism groups, the normalizerMathworldPlanetmath of their full groups, and approximate finiteness. Journal of Functional Analysis, 24, 336–352.
  • 122 Connes, A. and Rieffel, M. (1985). Yang-Mills for non-commutative tori. Contemporary Mathematics, 62, 237–265.
  • 123 Connes, A. and Skandalis, G. (1984). The longitudinal index theorem for foliations. Publications of the RIMS, Kyoto University, 20, 1139–1183.
  • 124 Connes, A. and Störmer, E. (1975). Entropy for automorphisms of II1 von Neumann algebras. Acta Mathematica, 134, 289–306.
  • 125 Connes, A. and Takesaki, M. (1977). The flow of weights on factors of type III. Tohoku Mathematical Journal, 29, 73–555.
  • 126 Conti, R., Doplicher, S., and Roberts, J. E. (2001). Superselection theory for subsystems. Communications in Mathematical Physics, 218, 263–281.
  • 127 Conti, R. and Pinzari, C. (1996). Remarks on the index of endomorphisms of Cuntz algebras. Journal of Functional Analysis, 142, 369–405.
  • 128 Coquereaux, R. (2005) The A2 Ocneanu quantum groupoidPlanetmathPlanetmath. in Algebraic structures and their representations, Contemporary Mathematics, 376, 227–247. hep-th/0311151.
  • 129 Coquereaux, R. and Schieber, G. (2002). Twisted partition functionsPlanetmathPlanetmath for ADE boundary conformal field theories and Ocneanu algebras of quantum symmetries. Journal of Geometry and Physics, 42, 216–258.
  • 130 Coquereaux, R. and Schieber, G. (2003). Determination of quantum symmetries for higher ADE systems from the modular T matrix. Journal of Mathematical Physics, 44, 3809–3837. hep-th/0203242.  bibitemCn Cuntz, J. (1977). Simple C*-algebras generated by isometriesMathworldPlanetmathPlanetmath. Communications in Mathematical Physics, 57, 173–185.
  • 131 Cuntz, J. (1981). K-theory for certain C*-algebras. Annals of Mathematics, 113, 181–197.
  • 132 Cuntz, J. (1984). K-theory and C*-algebras. Lecture Notes in Mathematics, Springer-Verlag, 1046.
  • 133 Cuntz, J. (1981). A class of C*-algebras and topological Markov chains II. Reducible Markov chains and the Ext functorMathworldPlanetmath for C*-algebras. Inventiones Mathematica, 63, 25–40.
  • 134 Cuntz, J. and Krieger, W. (1980). A class of C*-algebras and topological Markov chains. Inventiones Mathematicae, 56, 251–268.
  • 135 Cvetković, D., Doob, M. and Gutman, I. (1982). On graphs whose spectral radius does not exceed (2+5)1/2. Ars Combinatoria, 14, 225–239.
  • 136 D’Antoni, C., Fredenhagen, K. and Köster, S. (preprint 2003). Implementation of conformal covariance by diffeomorphism symmetry. math-ph/0312017.
  • 137 D’Antoni, C., Longo, R. and Radulescu, F. (2001). Conformal nets, maximal temperature and models from free probability. Journal of Operator Theory, 45, 195–208.
  • 138 Date, E., Jimbo, M., Kuniba, A., Miwa, T. and Okado, M. (1988). Exactly solvable SOS models II: Proof of the star-triangle relation and combinatorial identities. Advanced Studies in Pure Mathematics, 16, 17–122.
  • 139 Date, E., Jimbo, M., Miwa, T. and Okado, M. (1987). Solvable lattice models. Theta functions — Bowdoin 1987, Part 1, Proceedings of Symposia in Pure Mathematics Vol. 49, American Mathematical Society, Providence, R.I., pp. 295–332.
  • 140 David, M. C. (1996). Paragroupe d’Adrian Ocneanu et algèbre de Kac. Pacific Journal of Mathematics, 172, 331–363.
  • 141 Degiovanni, P. (1990). 𝐙/N𝐙 conformal field theories. Communications in Mathematical Physics, 127, 71–99.
  • 142 Degiovanni, P. (1992). Moore and Seiberg’s equations and 3D toplogical field theory. 145, 459–505.
  • 143 Di Francesco, P. (1992). Integrable lattice models, graphs, and modular invariant conformal field theories. International Journal of Modern Physics A, 7, 407–500.
  • 144 Di Francesco, P., Mathieu, P. and Sénéchal, D. (1996). Conformal Field Theory. Springer-Verlag, New York.
  • 145 Di Francesco, P., Saleur, H. and Zuber, J.-B. (1987). Modular invariance in non-minimal two-dimensional conformal field theories. Nuclear Physics, B285, 454–480.
  • 146 Di Francesco, P. and Zuber, J.-B. (1990). SU(N) latticeMathworldPlanetmathPlanetmath integrable models associated with graphs. Nuclear Physics B, 338, 602–646.
  • 147 Di Francesco, P. and Zuber, J.-B. (1990). SU(N) lattice integrable models and modular invariance. in Recent DevelopmentsMathworldPlanetmath in Conformal Field Theories, Trieste, 1989, World Scientific, 179–215.
  • 148 Dijkgraaf, R., Pasquier, V. and Roche, Ph. (1990). Quasi Hopf algebras, group cohomology and orbifoldMathworldPlanetmath models. Nuclear Physics B(Proc. Suppl.), 18, 60–72.
  • 149 Dijkgraaf, R., Pasquier, V. and Roche, Ph. (1991). Quasi-quantum groups related to orbifold models. Proceedings of the International Colloquium on Modern Quantum Field Theory, World Scientific, Singapore, 375–383.
  • 150 Dijkgraaf, R., Vafa, C., Verlinde, E. and Verlinde, H. (1989). The operator algebra of orbifold models. Communications in Mathematical Physics, 123, 485–526.
  • 151 Dijkgraaf, R. and Witten, E. (1990). Topological gauge theories and group cohomology. Communications in Mathematical Physics, 129, 393–429.
  • 152 Dixmier, J. (1964). Les C*-algebras et leurs représentations. Gauthier-Villars.
  • 153 Dixmier, J. (1967). On some C*-algebras considered by Glimm. Journal of Functional Analysis, 1, 182–203.
  • 154 Dixmier, J. (1969). Les algèbres d’opérateurs dans l’espace Hilbertien. (Algèbres de von Neumann.) 2nd ed. Gauthier Villars, Paris.
  • 155 Dixmier, J. (1981). Von Neumann Algebras. North-Holland.
  • 156 Dixmier, J. and C. Lance (1969). Deux nouveaux facteurs de type II. Inventiones Mathematicae, 7, 226–234.
  • 157 Dixon, L., Harvey, J. A., Vafa, C. and Witten, E. (1985). Strings on orbifolds. Nuclear Physics B, 261, 678–686.
  • 158 Dixon, L., Harvey, J. A., Vafa, C. and Witten, E. (1986). Strings on orbifolds. Nuclear Physics B, 274, 285–314.
  • 159 Dong, C. and Xu, F. (2006). Conformal nets associated with lattices and their orbifolds. Advances in Mathematics, 206, 279–306. math.OA/0411499.
  • 160 Doplicher, S., Haag, R. and Roberts, J. E. (1969). Fields, observables and gauge transformations II. Communications in Mathematical Physics, 15, 173–200.
  • 161 Doplicher, S., Haag, R. and Roberts, J. E. (1971, 74). Local obsevables and particle statistics, I,II. Communications in Mathematical Physics, 23, 199–230 and 35, 49–85.
  • 162 Doplicher, S. and Longo, R. (1984). Standard and split inclusions of von Neumann algebras. Inventiones Mathematicae, 75, 493–536. bibitemDP Doplicher, S. and , Piacitelli, G. (preprint 2002). Any compact group is a gauge group. hep-th/0204230.
  • 163 Doplicher, S., Pinzari, C. and Roberts, J. E. (2001). An algebraic duality theory for multiplicative unitariesMathworldPlanetmathPlanetmath. International Journal of Mathematics, 12, 415–459.
  • 164 Doplicher, S. and Roberts, J. E. (1989). Endomorphisms of C*-algebras, cross productsMathworldPlanetmath and duality for compact groups. Annals of Mathematics, 130, 75–119.
  • 165 Doplicher, S. and Roberts, J. E. (1989). A new duality theory for compact groups. Inventiones Mathematica, 98, 157–218.
  • 166 Drinfeld, V. G. (1986). Quantum groups. Proc. ICM-86, Berkeley, 798–820.
  • 167 Dunford, N. and Schwartz, J. T. (1958). Linear OperatorsMathworldPlanetmath Volume I. Interscience.
  • 168 Durhuus, B., Jakobsen, H. P. and Nest, R. (1993). Topological quantum field theories from generalized 6j-symbols. Reviews in Mathematical Physics, 5, 1–67.
  • 169 Elliott, G. A. (1976). On the classification of inductive limits of sequences of semisimplePlanetmathPlanetmathPlanetmathPlanetmathPlanetmath finite-dimensional algebras. Journal of Algebra, 38, 29–44.
  • 170 Enock, M. (1998). Inclusions irréducibles de facteurs et unitaires multiplicatifs, II. Journal of Functional Analysis, 154, 67–109.
  • 171 Enock, M. (1999). Sous-facteurs intermédiaires et groupes quantiques mesurés. Journal of Operator Theory, 42, 305–330.
  • 172 Enock, M. (2000). Inclusions of von Neumann algebras and quantum groupoids, II. Journal of Functional Analysis, 178, 156–225.
  • 173 Enock, M. and Nest, R. (1996). Irreducible inclusions of factors multiplicative unitaries, and Kac algebras. Journal of Functional Analysis, 137, 466–543.
  • 174 Enock, M. and Vallin, J.-M. (2000). Inclusions of von Neumann algebras and quantum groupoids. Journal of Functional Analysis, 172, 249–300.
  • 175 Erlijman, J. (1998). New braided subfactors from braid groupMathworldPlanetmath representations. Transactions of the American Mathematical Society, 350, 185–211.
  • 176 Erlijman, J. (2000). Two-sided braid subfactors and asymptotic inclusions. Pacific Journal of Mathematics, 193, 57–78.
  • 177 Erlijman, J. (2001). Multi-sided braid subfactors. Canadian Journal of Mathematics, 53, 546–564.
  • 178 Evans, D.E. (1984). The C*-algebras of topological Markov chains. Tokyo Metropolitan University Lecture Notes.
  • 179 Evans, D. E. (1985). The C*-algebras of the two-dimensional Ising model. Springer Lecture Notes in Mathematics, 1136, 162–176.
  • 180 Evans, D. E. (1985). Quasi-product states on C*-algebras. Operator algebras and their connections with topologyMathworldPlanetmath and ergodic theory, Springer Lecture Notes in Mathematics, 1132, 129–151.
  • 181 Evans, D. E. (1990). C*-algebraic methods in statistical mechanics and field theory. International Journal of Modern Physics B, 4, 1069–1118.
  • 182 Evans, D. E. (2002). Fusion rules of modular invariants. Reviews in Mathematical Physics, 14, 709–731. math.OA/0204278
  • 183 Evans, D. E. (preprint 2002). Critical phenomena, modular invariants and operator algebras. math.OA/0204281.
  • 184 Evans, D. E. and Gould, J. D. (1989). Dimension groups, embeddings and presentationsMathworldPlanetmathPlanetmath of AF algebras associated to solvable lattice models. Modern Physics Letters A, 20, 1883–1890.
  • 185 Evans, D. E. and Gould, J. D. (1994). Dimension groups and embeddings of graph algebras. International Journal of Mathematics, 5, 291–327.
  • 186 Evans, D. E. and Gould, J. D. (1994). Presentations of AF algebras associated to T-graphs. Publications of the RIMS, Kyoto University, 30, 767–798.
  • 187 Evans, D. E. and Kawahigashi, Y. (1993). Subfactors and conformal field theory. in “Quantum and non-commutative analysis”, 341–369, Kluwer Academic.
  • 188 Evans, D. E. and Kawahigashi, Y. (1994). Orbifold subfactors from Hecke algebrasMathworldPlanetmath. Communications in Mathematical Physics, 165, 445–484.
  • 189 Evans, D. E. and Kawahigashi, Y. (1994). The E7 commuting squares produce D10 as principal graph. Publications of the RIMS, Kyoto University, 30, 151–166.
  • 190 Evans, D. E. and Kawahigashi, Y. (1995). On Ocneanu’s theory of asymptotic inclusions for subfactors, topological quantum field theories and quantum doubles. International Journal of Mathematics, 6, 205–228.
  • 191 Evans, D. E. and Kawahigashi, Y. (1995). From subfactors to 3-dimensional topological quantum field theories and back — a detailed account of Ocneanu’s theory —. International Journal of Mathematics, 6, 537–558.
  • 192 Evans, D. E. and Kawahigashi, Y. (1998). Orbifold subfactors from Hecke algebras II —Quantum doubles and braiding—. Communications in Mathematical Physics, 196, 331–361.
  • 193 Evans, D. E. and Kawahigashi, Y. (1998). Quantum symmetries on operator algebras. Oxford University Press.
  • 194 Evans, D. E. and Pinto, P. R. (2003). Subfactor realisation of modular invariants. Communications in Mathematical Physics, 237, 309–363. math.OA/0309174.
  • 195 Evans, D. E. and Pinto, P. R. (preprint 2003). Modular invariants and their fusion rules. math.OA/0309175
  • 196 Evans, D. E. and Pinto, P. R. (preprint 2004). Modular invariants and the double of the Haagerup subfactor.
  • 197 Fack, T. and Marèchal, O (1979). Sur la classification des symètries des C*-algébres UHF. Canadian Journal of Mathematics, 31, 496–523.
  • 198 Fack, T. and Marèchal, O. (1981). Sur la classification des automorphisms pèriodiques des C*-algébres UHF. Journal of Functional Analysis, 40, 267–301.
  • 199 Felder, F., Fröhlich, J. and Keller, G. (1990). On the structure of unitary conformal field theory. II. Representation-theoretic approach. Communications in Mathematical Physics, 130, 1–49.
  • 200 Fendley, P. (1989). New exactly solvable orbifold models. Journal of Physics A, 22, 4633–4642.
  • 201 Fendley, P. and Ginsparg, P. (1989). Non-critical orbifolds. Nuclear Physics B, 324, 549–580.
  • 202 Fenn, R. and Rourke, C. (1979). On Kirby’s calculus of links. Topology, 18, 1–15.
  • 203 Fidaleo, F. and Isola, T. (preprint 1996). The canonical endomorphism for infinite index inclusions.
  • 204 Fredenhagen, K. (1994). Superselection sectors with infinite statistical dimension. in Subfactors — Proceedings of the Taniguchi Symposium, Katata —, (ed. H. Araki, et al.), World Scientific, 242–258.
  • 205 Fredenhagen, K. and Jörß, M. (1996). Conformal Haag-Kastler nets, pointlike localized fields and the existence of operator product expansion. Communications in Mathematical Physics, 176 (1996) 541–554.
  • 206 Fredenhagen, K., Rehren, K.-H. and Schroer, B. (1989). Superselection sectors with braid group statistics and exchange algebras. Communications in Mathematical Physics, 125, 201–226.
  • 207 Fredenhagen, K., Rehren, K.-H. and Schroer, B. (1992). Superselection sectors with braid group statistics and exchange algebras II. Reviews in Mathematical Physics (special issue), 113–157.
  • 208 Freyd, P., Yetter, D.; Hoste, J.; Lickorish, W., Millet, K.; and Ocneanu, A. (1985). A new polynomial invariant of knots and links. Bulletin of the American Mathematical Society, 12, 239–246.
  • 209 Friedan, D., Qui, Z. and Shenker, S. (1984). Conformal invariance, unitarity and critical exponents in two dimensions. Physical Review Letters, 52, 1575–1578.
  • 210 Fröhlich, J. (1987). Statistics of fields, the Yang–Baxter equation and the theroy of knots and links. Proceedings of Cargèse, ed. G.’t Hooft et al.
  • 211 Fröhlich, J. (1988). The Statistics of Fields, the Yang–Baxter Equation, and the Theory of Knots and Links. In “Non-Pert. Quantum Field Theory”, G. ’tHooft et al. (ed.), Plenum. (Cargese Lectures, 1987).
  • 212 Fröhlich, J. and Gabbiani, F. (1990). Braid statistics in local quantum theoryPlanetmathPlanetmath. Reviews in Mathematical Physics, 2, 251–353.
  • 213 Fröhlich, J. and Kerler, T. (1993). Quantum groups, quantum categoriesPlanetmathPlanetmathPlanetmath and quantum field theory. Lecture Notes in Mathematics, 1542, Springer.
  • 214 Fröhlich, J. and King, C. (1989). The Chern–Simons theory and knot polynomials. Communications in Mathematical Physics, 126, 167–199.
  • 215 Fröhlich, J. and King, C. (1989). Two-dimensional conformal field theory and three-dimensional topology. International Journal of Modern Physics A, 4, 5321–5399.
  • 216 Fröhlich, J. and Marchetti, P.-A. (1988). Quantum field theory of anyons. Letters in Mathematical Physics, 16, 347–358.
  • 217 Fröhlich, J. and Marchetti, P.-A. (1989). Quantum field theories of vortices and anyons. Communications in Mathematical Physics, 121, 177–223.
  • 218 Fuchs, J. (1992). Affine Lie algebras and quantum groups. Cambridge University Press.
  • 219 Fuchs, J., Runkel, I. and Schweigert, C. (2002). TFT construction of RCFT correlators I: Partition functions. Nuclear Physics B, 646, 353–497. hep-th/0204148.
  • 220 Fuchs, J. and Schweigert, C. (2000). Solitonic sectors, alpha-induction and symmetry breaking boundaries. Physics Letters, B490, 163–172. hep-th/0006181.
  • 221 Fuchs, J. and Schweigert, C. (preprint 2001). Category theoryMathworldPlanetmathPlanetmathPlanetmathPlanetmath for conformal boundary conditions. math.CT/0106050.
  • 222 Gabbiani, F. and Fröhlich, J. (1993). Operator algebras and conformal field theory. Communications in Mathematical Physics, 155, 569–640.
  • 223 Gannon, T. (1993). WZW commutants, lattices and level – one partition functions. Nuclear Physics B, 396, 708–736.
  • 224 Gannon, T. (1994). The classification of affine SU(3) modular invariant partition functions. Communications in Mathematical Physics, 161, 233–264.
  • 225 Gannon, T. and Ho-Kim, Q. (1994). The rank-four heterotic modular invariant partition functions. Nuclear Physics B, 425, 319–342.
  • 226 Gantmacher, F. R. (1960). The theory of matrices. Vol. 2. Chelsea.
  • 227 Ge, L. and Popa, S. (1998). On some decomposition properties for factors of type II1. Duke Mathematical Journal, 94, 79–101.
  • 228 Gepner, D. and Witten, E. (1986). String theory on group manifolds. Nuclear Physics B, 278, 493–549.
  • 229 Gnerre, S. (2000). Free compositions of paragroups. Journal of Functional Analysis, 175, 251–278.
  • 230 Goddard, P., Kent, A. and Olive, D. (1986). Unitary representationsMathworldPlanetmath of the Virasoro and super-Virasoro algebras. Communications in Mathematical Physics, 103, 105–119.
  • 231 Goddard, P., Nahm, W. and Olive, D. (1985). Symmetric spaces, Sugawara’s energy momentum tensor in two dimensions and free Fermions. Physics Letters, 160B, 111–116.
  • 232 Goddard, P. and Olive, D. (1988). Kac–Moody and Virasoro algebras. Advanced Series in Mathematical Physics, 3, World Scientific.
  • 233 Goldman, M. (1960). On subfactors of type II1. The Michigan Mathematical Journal, 7, 167–172.
  • 234 Goldschmidt, D. M. and Jones, V. F. R. (1989) Metaplectic link invariants. Geometriae Dedicata, 31, 165–191.
  • 235 Goodman, F., de la Harpe, P. and Jones, V. F. R. (1989). Coxeter graphs and towers of algebras. MSRI Publications (Springer), 14.
  • 236 Goodman, F. and Wenzl, H. (1990). Littlewood Richardson coefficients for Hecke algebras at roots of unityMathworldPlanetmath. Advances in Mathematics, 82, 244–265.
  • 237 Goto, S. (1994). Orbifold construction for non-AFD subfactors. International Journal of Mathematics, 5, 725–746.
  • 238 Goto, S. (1995). SymmetricMathworldPlanetmathPlanetmath flat connections, triviality of Loi’s invariant, and orbifold subfactors. Publications of the RIMS, Kyoto University, 31, 609–624.
  • 239 Goto, S. (1996). Commutativity of automorphisms of subfactors modulo inner automorphisms. Proceedings of the American Mathematical Society, 124, 3391–3398.
  • 240 Goto, S. (2000). Quantum double construction for subfactors arising from periodic commuting squares. Journal of the Mathematical Society of Japan, 52, 187–198.
  • 241 Greenleaf, F. P. (1969). Invariant means on topological groupsMathworldPlanetmath and their applications, van Nostrand, New York.
  • 242 Grossman, P. (preprint 2006). Forked Temperley-Lieb algebras and intermediate subfactors. math.OA/0607335.
  • 243 Grossman, P., and Izumi, M. (2008). Classification of noncommuting quadrilateralsMathworldPlanetmath of factors. International Journal of Mathematics, 19, 557–643. arXiv:0704.1121.
  • 244 Grossman, P. and Jones, V. F. R. (2007). Intermediate subfactors with no extra structure. Journal of the American Mathematical Society, 20, 219–265. math.OA/0412423.
  • 245 Guido, D. and Longo, R. (1992). Relativistic invariance and charge conjugation in quantum field theory. Communications in Mathematical Physics, 148, 521—551.
  • 246 Guido, D. and Longo, R. (1995). An algebraic spin and statistics theorem. Communications in Mathematical Physics, 172, 517–533.
  • 247 Guido, D. and Longo, R. (1996). The conformal spin and statistics theorem. Communications in Mathematical Physics, 181, 11–35.
  • 248 Guido, D. and Longo, R. (in press). A converseMathworldPlanetmath Hawking-Unruh effect and dS2/CFT correspondance. Annales Henri Poincaré. gr-qc/0212025.
  • 249 Guido, D., Longo, R. and Wiesbrock, H.-W. (1998). Extensions of conformal nets and superselection structures. Communications in Mathematical Physics, 192, 217–244.
  • 250 Guido, D., Longo, R., Roberts, J. E. and Verch, R. (2001). Charged sectors, spin and statistics in quantum field theory on curved spacetimes. Reviews in Mathematical Physics, 13, 125–198.
  • 251 Guionnet, A., Jones, V. F. R., Shlyakhtenko, D. (preprint 2007). Random matricesMathworldPlanetmath, free probability, planar algebras and subfactors. arXiv:0712.2904.
  • 252 Haag, R. (1996). Local Quantum Physics. Springer-Verlag, Berlin-Heidelberg-New York.
  • 253 Haag, R and Kastler, T. (1964). An algebraic approach to quantum field theory. Journal of Mathematical Physics, 5, 848–861.
  • 254 Haagerup, U. (1975). Normal weights on W*-algebras. Journal of Functional Analysis, 19, 302–317.
  • 255 Haagerup, U. (1983). All nuclear C*-algebras are amenable. Inventiones Mathematica, 74, 305–319.
  • 256 Haagerup, U. (1987). Connes’ bicentralizer problem and the uniqueness of the injective factor of type III1. Acta Mathematica, 158, 95–148.
  • 257 Haagerup, U. (preprint 1991). Quasi-traces on exact C*–algebras are traces.
  • 258 Haagerup, U. (1994). Principal graphs of subfactors in the index range 4<3+2. in Subfactors -Proceedings of the Taniguchi Symposium, Katata -, (ed. H. Araki, et al.), World Scientific, 1–38.
  • 259 Haagerup, U. and Störmer, E. (1990). Equivalences of normal states on von Neumann algebras and the flow of weights. Advances in Mathematics 83, 180–262.
  • 260 Haagerup, U. and Störmer, E. (1990). Pointwise inner automorphisms of von Neumann algebras (with an appendix by Sutherland, C. E.). Journal of Functional Analysis, 92, 177–201.
  • 261 Haagerup, U. and Winslöw, C. (1998). The Effros–Maréchal topology in the space of von Neumann algebras. American Journal of Mathematics, 120, 567–617.
  • 262 Haagerup, U. and Winslöw, C. (2000). The Effros–Maréchal topology in the space of von Neumann algebras, II. Journal of Functional Analysis, 171, 401–431.
  • 263 Hamachi, T. and Kosaki, H. (1988). Index and flow of weights of factors of type III. Proceedings of the Japan Academy, 64A, 11–13.
  • 264 Hamachi, T. and Kosaki, H. (1988). Inclusions of type III factors constructed from ergodic flows. Proceedings of the Japan Academy, 64A, 195–197.
  • 265 Hamachi, T. and Kosaki, H. (1993). Orbital factor map. Ergodic Theory and Dynamical Systems, 13, 515–532.
  • 266 de la Harpe, P. (1979). Moyennabilité du groupe unitaire et propriété P de Schwartz des algèbres de von Neumann. Algèbres d’opérateurs (Séminaire, Les Plans-sur-Bex, Suisse 1978) (editor, P. de la Harpe), Lecture Notes in Mathematics, Springer-Verlag, 725, 220–227.
  • 267 de la Harpe, P. and Wenzl, H. (1987). OperationsMathworldPlanetmath sur les rayons spectraux de matrices symetriques entieres positivesPlanetmathPlanetmath. Comptes Rendus de l’Academie des Sciences, Série I, Mathématiques, 305, 733–736.
  • 268 Havet, J.-F. (1976). Espérance conditionnelles permutables à un group d’automorphismes sur une algèbre de von Neumann. Comptes Rendus de l’Academie des Sciences, Série I, Mathématiques, 282 (1976), 1095–1098..
  • 269 Havet, J.-F. (1990). Espérance conditionnelle minimale. Journal of Operator Theory, 24, 33–35.
  • 270 Hayashi, T. (1993). Quantum group symmetry of partition functions of IRF models and its application to Jones’ index theory. Communications in Mathematical Physics, 157, 331–345.
  • 271 Hayashi, T. (1996). Compact quantum groups of face type. Publications of the RIMS, Kyoto University, 32, 351–369.
  • 272 Hayashi, T. (1998). Faes algebras I. A generalizationPlanetmathPlanetmath of quantum group theory. Journal of the Mathematical Society of Japan, 50, 293–315.
  • 273 Hayashi, T. (1999). Face algebras and unitarity of SU(N)L-TQFT. Communications in Mathematical Physics, 203, 211-247.
  • 274 Hayashi, T. (1999). Galois quantum groups of II1-subfactors. Tôhoku Mathematical Journal, 51, 365–389.
  • 275 Hayashi, T. (2000). Harmonic function spaces of probability measures on fusion algebras. Publications of the RIMS, Kyoto University, 36, 231–252.
  • 276 Hayashi, T. and Yamagami, S. (2000). Amenable tensor categories and their realizations as AFD bimodules. Journal of Functional Analysis, 172, 19–75.
  • 277 Herman, R. H. and Ocneanu, A. (1984). Stability for integer actions on UHF C*-algebras. Journal of Functional Analysis, 59, 132–144.
  • 278 Hiai, F. (1988). Minimizing indices of conditional expectations onto a subfactor. Publications of the RIMS, Kyoto University, 24, 673–678.
  • 279 Hiai, F. (1990). Minimum index for subfactors and entropy I. Journal of Operator Theory, 24, 301–336.
  • 280 Hiai, F. (1991). Minimum index for subfactors and entropy, II. Journal of the Mathematical Society of Japan, 43, 347–380.
  • 281 Hiai, F. (1994). Entropy and growth for derived towers of subfactors. in Subfactors — Proceedings of the Taniguchi Symposium, Katata —, (ed. H. Araki, et al.), World Scientific, 206–232.
  • 282 Hiai, F. (1995). Entropy for canonical shifts and strong amenability. International Journal of Mathematics, 6, 381–396.
  • 283 Hiai, F. (1997). Standard invariants for crossed products inclusions of factors. Pacific Journal of Mathematics, 177, 237–267.
  • 284 Hiai, F. and Izumi, M. (1998). Amenability and strong amenability for fusion algebras with applications to subfactor theory. International Journal of Mathematics, 9, 669–722.
  • 285 Hislop, P. and Longo, R. (1982). Modular structure of the local algebras associated with the free massless scalar field theory. Communications in Mathematical Physics, 84 (1982) 71–85.
  • 286 Hofman, A. J. (1972). On limit pointsPlanetmathPlanetmath of spectral radii of non-negative symmetric integral matrices. Lecture Notes in Mathematics, 303, Springer Verlag, 165–172.
  • 287 Ikeda, K. (1998). Numerical evidence for flatness of Haagerup’s connections. Journal of the Mathematical Sciences, University of Tokyo, 5, 257–272.
  • 288 Ishikawa, H. and Tani, T. (preprint 2002). Novel construction of boundary states in coset conformal field theories. hep-th/0207177.
  • 289 Izumi, M. (1991). Application of fusion rules to classification of subfactors. Publications of the RIMS, Kyoto University, 27, 953–994.
  • 290 Izumi, M. (1992). Goldman’s type theorem for index 3. Publications of the RIMS, Kyoto University, 28, 833–843.
  • 291 Izumi, M. (1993). On type III and type II principal graphs for subfactors. Mathematica Scandinavica, 73, 307–319.
  • 292 Izumi, M. (1993). Subalgebras of infinite C*-algebras with finite Watatani indices I. Cuntz algebras. Communications in Mathematical Physics, 155, 157–182.
  • 293 Izumi, M. (1994). On flatness of the Coxeter graph E8. Pacific Journal of Mathematics, 166, 305–327.
  • 294 Izumi, M. (1994). Canonical extension of endomorphisms of factors. in Subfactors — Proceedings of the Taniguchi Symposium, Katata —, (ed. H. Araki, et al.), World Scientific, 274–293.
  • 295 Izumi, M. (1998). Subalgebras of infinite C*-algebras with finite Watatani indices II: Cuntz-Krieger algebras. Duke Mathematical Journal, 91, 409–461.
  • 296 Izumi, M. (1999). Actions of compact quantum groups on operator algebras. in XIIth International Congress of Mathematical Physics, International Press, 249–253.
  • 297 Izumi, M. (2000). The structure of sectors associated with Longo-Rehren inclusions I. General theory. Communications in Mathematical Physics, 213, 127–179.
  • 298 Izumi, M. (2001). The structure of sectors associated with Longo-Rehren inclusions II. Examples. Reviews in Mathematical Physics, 13, 603–674.
  • 299 Izumi, M. (2002). Non-commutative Markov operatorsMathworldPlanetmath arising from subfactors. Advances in Mathematics, 169, 1–57.
  • 300 Izumi, M. (2003). Canonical extension of endomorphisms of type III factors. American Journal of Mathematics, 125, 1–56.
  • 301 Izumi, M. (2002). Inclusions of simple C*-algebras. Journal für die Reine und Angewandte Mathematik, 547, 97–138.
  • 302 Izumi, M. (2002). Characterization of isomorphicPlanetmathPlanetmath group-subgroup subfactors. International Mathematics Research Notices, 1791–1803.
  • 303 Izumi, M. and Kawahigashi, Y. (1993). Classification of subfactors with the principal graph Dn(1). Journal of Functional Analysis, 112, 257–286.
  • 304 Izumi, M. and Kosaki, H. (1996). Finite dimensional Kac algebras arising from certain group actionsMathworldPlanetmath on a factor. International Mathematics Research Notices, 357–370.
  • 305 Izumi, M. and Kosaki, H. (2002). Kac algebras arising from composition of subfactors: General theory and classification. Memoirs of the American Mathematical Society, 158, no. 750.
  • 306 Izumi, M. and Kosaki, H. (2002). On a subfactor analogue of the second cohomology. Reviews in Mathematical Physics, 14, 733–757.
  • 307 Izumi, M., Longo, R. and Popa, S. (1998). A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras. Journal of Functional Analysis, 155, 25–63.
  • 308 Jimbo, M. (1986). A q-differencePlanetmathPlanetmath analogue of U(g) and the Yang-Baxter equation. Letters in Mathematical Physics, 102, 537–567.
  • 309 Jimbo, M. (1986). A q-analogue of U(N+1), Hecke algebra and the Yang-Baxter equation. Letters in Mathematical Physics, 11, 247–252.
  • 310 Jimbo, M., T, Miwa and Okado, M. (1987). Solvable lattice models whose states are dominant integral weights of An-1(1). Letters in Mathematical Physics, 14, 123–131.
  • 311 Jimbo, M., T, Miwa and Okado, M. (1988). Solvable lattice models related to the vector representation of classical simple Lie algebras. Communications in Mathematical Physics, 116, 507–525.
  • 312 Jones, V. F. R. (1980). A factor anti-isomorphic to itself but without involutoryMathworldPlanetmath anti-automorphisms. Mathematica Scandinavica, 46, 103–117.
  • 313 Jones, V. F. R. (1980). Actions of finite groupsMathworldPlanetmath on the hyperfinite type II1 factor. Memoirs of the American Mathematical Society, 237.
  • 314 Jones, V. F. R. (1983). Index for subfactors. Inventiones Mathematicae, 72, 1–25.
  • 315 Jones, V. F. R. (1985). A polynomial invariant for knots via von Neumann algebras. Bulletin of the American Mathematical Society, 12, 103–112.
  • 316 Jones, V. F. R. (1986). A new knot polynomial and von Neumann algebras. Notices of the American Mathematical Society, 33, 219–225.
  • 317 Jones, V. F. R. (1986). Braid groups, Hecke algebras and type II1 factors. (1986). in Geometric Methods in Operator Algebras, ed. H. Araki and E. G. Effros., Longman, 242–273.
  • 318 Jones, V. F. R. (1987). Hecke algebra representations of braid groups and link polynomials. Annals of Mathematics, 126, 335–388.
  • 319 Jones, V. F. R. (1989). On a certain value of the Kauffman polynomial. Communications in Mathematical Physics, 125, 459–467.
  • 320 Jones, V. F. R. (1989). On knot invariants related to some statistical mechanical models. Pacific Journal of Mathematics, 137, 311–334.
  • 321 Jones, V. F. R. (1990). Knots, braids and statistical mechanics. in Advances in differential geometry and topology, 149–184.
  • 322 Jones, V. F. R. (1990). Baxterization. International Journal of Modern Physics B, 4, 701–713.
  • 323 Jones, V. F. R. (1990). Notes on subfactors and statistical mechanics. International Journal of Modern Physics A, 5, 441–460.
  • 324 Jones, V. F. R. (1991). von Neumann algebras in mathematics and physics. Proceedings of ICM-90, 121–138, Springer.
  • 325 Jones, V. F. R. (1991). Subfactors and knots. CBMS Regional Conference Series in Mathematics, 80.
  • 326 Jones, V. F. R. (1992). From quantum theory to knot theoryMathworldPlanetmath and back: a von Neumann algebra excursion. in American Mathematical Society centennial publications, Vol. II, 321–336.
  • 327 Jones, V. F. R. (1994). The Potts model and the symmetric groupMathworldPlanetmathPlanetmath. in Subfactors — Proceedings of the Taniguchi Symposium, Katata —, (ed. H. Araki, et al.), World Scientific, 259–267.
  • 328 Jones, V. F. R. (1994). On a family of almost commuting endomorphisms. Journal of Functional Analysis, 119, 84–90.
  • 329 Jones, V. F. R. (1995). Fusion en algèbres de von Neumann et groupes de lacets (d’après A. Wassermann). Seminaire Bourbaki, 800, 1–20.
  • 330 Jones, V. F. R. (in press). Planar algebras I. New Zealand Journal of Mathematics. math.QA/9909027.
  • 331 Jones, V. F. R. (2000). Ten problems. in Mathematics: frontiers and perspectives, Amer. Math. Soc., 79–91.
  • 332 Jones, V. F. R. (2000). The planar algebras of a bipartite graph. in Knots in Hellas ’98, World Scientific, 94–117.
  • 333 Jones, V. F. R. (2001). The annular structure of subfactors. in Essays on geometry and related topics, Monographies de L’Enseignement Matheḿatique, 38, 401–463.
  • 334 Jones, V. F. R. (preprint 2003). In and around the origin of quantum groups. math.OA/0309199.
  • 335 Jones, V. F. R. (preprint 2003). Quadratic tangles in planar algebras.
  • 336 Jones, V. F. R. and Sunder, V. S. (1997). Introduction to subfactors. London Math. Soc. Lecture Notes Series 234, Cambridge University Press.
  • 337 Jones, V. F. R. and Takesaki, M. (1984). Actions of compact abelian groups on semifinite injective factors. Acta Mathematica, 153, 213–258.
  • 338 Jones, V. F. R. and Wassermann, A. (in preparation). Fermions on the circle and representations of loop groups.
  • 339 Jones, V. F. R. and Xu, F. (2004). IntersectionsMathworldPlanetmathPlanetmath of finite families of finite index subfactors. International Journal of Mathematics, 15, 717–733. math.OA/0406331.
  • 340 Kac, V. (1990). Infinite dimensional Lie algebras. 3ème édition, Cambridge University Press.
  • 341 Kac, V., Longo, R. and Xu, F. (2004). Solitons in affine and permutationMathworldPlanetmath orbifolds. Communications in Mathematical Physics, 253, 723–764. math.OA/0312512.
  • 342 Kač, V. and Petersen, D. H. (1984). Infinite dimensional Lie algebras, theta functions, and modular formsMathworldPlanetmath. Advances in Mathematics, 53, 125–264.
  • 343 Kač, V. and Raina, A. K. (1987). Highest weight representations of infinite dimensional Lie algebras. World Scientific.
  • 344 Kadison, R. V. and Ringrose, J. R. (1983). Fundamentals of the Theory of Operator Algebras Vol I. Academic Press.
  • 345 Kadison, R. V. and Ringrose, J. R. (1986). Fundamentals of the Theory of Operator Algebras Vol II. Academic Press.
  • 346 Kajiwara, T., Pinzari, C., and Watatani, Y. (2004). Jones index theory for Hilbert C*-bimodules and its equivalence with conjugation theory. Journal of Functional Analysis, 215, 1–49. math.OA/0301259
  • 347 Kallman, R. R. (1971). Groups of inner automorphisms of von Neumann algebras. Journal of Functional Analysis, 7, 43–60.
  • 348 Karowski, M. (1987). Conformal quantum field theories and integrable theories. Proceedings of the Brasov Summer School, September 1987, ed. P. Dita et al., Academic Press.
  • 349 Karowski, M. (1988). Finite size corrections for integrable systems and conformal properties of six-vertex models. Nuclear Physics B, 300, 473–499.
  • 350 Kastler D. (1990). (editor) The algebraic theory of Superselection sectors. Introduction and recent results. World Scientific, Singapore.
  • 351 Kato, A. (1987). Classification of modular invariant partition functions in two dimensions. Modern Physics Letters A, 2, 585–600.
  • 352 Kauffman, L. H. (1986). Chromatic polynomial, Potts model, Jones polynomialMathworldPlanetmath Lecture notes.
  • 353 Kauffman, L. (1987). State models and the Jones polynomial. Topology, 26, 395–407.
  • 354 Kauffman, L. (1990). An invariant of regular isotopy. Transactions of the American Mathematical Society, 318, 417–471.
  • 355 Kauffman, L. (1991). Knots and Physics. World Scientific, Singapore.
  • 356 Kauffman, L. and Lins, S. L. (1994). Temperley–Lieb recoupling theory and invariants of 3-manifolds. Princeton University Press, Princeton.
  • 357 Kawahigashi, Y. (1992). Automorphisms commuting with a conditional expectation onto a subfactor with finite index. Journal of Operator Theory, 28, 127–145.
  • 358 Kawahigashi, Y. (1992). Exactly solvable orbifold models and subfactors. Functional Analysis and Related Topics, Lecture Notes in Mathematics, Springer, 1540, 127–147.
  • 359 Kawahigashi, Y. (1993). Centrally trivial automorphisms and an analogue of Connes’s χ(M) for subfactors. Duke Mathematical Journal, 71, 93–118.
  • 360 Kawahigashi, Y. (1994). Paragroup and their actions on subfactors. in Subfactors — Proceedings of the Taniguchi Symposium, Katata —, (ed. H. Araki, et al.), World Scientific, 64–84.
  • 361 Kawahigashi, Y. (1995). On flatness of Ocneanu’s connections on the Dynkin diagramsMathworldPlanetmath and classification of subfactors. Journal of Functional Analysis, 127, 63–107.
  • 362 Kawahigashi, Y. (1995). Orbifold subfactors, central sequences and the relative Jones invariant κ. International Mathematical Research Notices, 129–140.
  • 363 Kawahigashi, Y. (1995). Classification of paragroup actions on subfactors. Publications of the RIMS, Kyoto University, 31, 481–517.
  • 364 Kawahigashi, Y. (1996). Paragroups as quantized Galois groups of subfactors. Sugaku Expositions, 9, 21–35.
  • 365 Kawahigashi, Y. (1997). Classification of approximately inner automorphisms of subfactors. Mathematische Annalen, 308, 425–438.
  • 366 Kawahigashi, Y. (1997). Quantum doubles and orbifold subfactors. in Operator Algebras and Quantum Field Theory (ed. S. Doplicher, et al.), International Press, 271–283.
  • 367 Kawahigashi, Y. (1998). Subfactors and paragroup theory. in Operator Algebras and Operator Theory (ed. L. Ge, et al.), Contemporary Mathematics, 228, 179–188.
  • 368 Kawahigashi, Y. (1999). Quantum Galois correspondence for subfactors. Journal of Functional Analysis, 167, 481–497.
  • 369 Kawahigashi, Y. (2004). Braiding and nets of factors on the circle. in Operator Algebras and Applications (ed. H. Kosaki), Advanced Studies in Pure Mathematics 38, 219–228.
  • 370 Kawahigashi, Y. (2001). Braiding and extensions of endomorphisms of subfactors. in Mathematical Physics in Mathematics and Physics (ed. R. Longo), The Fields Institute Communications 30, Providence, Rhode Island: AMS Publications, 261–269.
  • 371 Kawahigashi, Y. (2002). Generalized Longo-Rehren subfactors and α-induction. Communications in Mathematical Physics, 226, 269–287. math.OA/0107127.
  • 372 Kawahigashi, Y. (2003). Conformal quantum field theory and subfactors. Acta Mathematica Sinica, 19, 557–566.
  • 373 Kawahigashi, Y. (2003). Classification of operator algebraic conformal field theories. “Advances in Quantum Dynamics”, Contemporary Mathematics, 335, 183–193. math.OA/0211141.
  • 374 Kawahigashi, Y. (2005). Subfactor theory and its applications — operator algebras and quantum field theory —. “Selected Papers on Differential Equations”, Amer. Math. Soc. Transl. 215, Amer. Math. Soc., 97–108.
  • 375 Kawahigashi, Y. (2005). Topological quantum field theories and operator algebras. Quantum Field Theory and Noncommutative Geometry, Lecture Notes in Physics, Springer, 662, 241–253. math.OA/0306112.
  • 376 Kawahigashi, Y. (2005). Classification of operator algebraic conformal field theories in dimensions one and two. XIVth International Congress on Mathematical Physics, World Scientific, 476–485. math-ph/0308029.
  • 377 Kawahigashi, Y. (preprint 2007). Conformal field theory and operator algebras. arXiv:0704.0097.
  • 378 Kawahigashi, Y. (preprint 2007). Superconformal field theory and operator algebras.
  • 379 Kawahigashi, Y. and Longo, R. (2004). Classification of Local Conformal Nets. Case c<1. Annals of Mathematics, 160, 493–522. math-ph/0201015.
  • 380 Kawahigashi, Y. and Longo, R. (2004). Classification of two-dimensional local conformal nets with c<1 and 2-cohomology vanishing for tensor categories. Communications in Mathematical Physics, 244, 63–97. math-ph/0304022.
  • 381 Kawahigashi, Y. and Longo, R. (2005).Noncommutative spectral invariants and black hole entropy. Communications in Mathematical Physics, 257, 193–225. math-ph/0405037.
  • 382 Kawahigashi, Y. and Longo, R. (2006). Local conformal nets arising from framed vertex operator algebras. Advances in Mathematics, 206, 729–751. math.OA/0407263.
  • 383 Kawahigashi, Y., Longo, R. and Müger, M. (2001). Multi-interval subfactors and modularity of representations in conformal field theory. Communications in Mathematical Physics, 219, 631–669. math.OA/9903104.
  • 384 Kawahigashi, Y., Longo, R., Pennig, U. and Rehren, K.-H. (2007). The classification of non-local chiral CFT with c<1. Communications in Mathematical Physics, 271, 375–385. math.OA/0505130.
Title bibliography for operator algebras in mathematical physics and AQFT-A to K
Canonical name BibliographyForOperatorAlgebrasInMathematicalPhysicsAndAQFTAToK
Date of creation 2013-03-22 18:46:14
Last modified on 2013-03-22 18:46:14
Owner bci1 (20947)
Last modified by bci1 (20947)
Numerical id 10
Author bci1 (20947)
Entry type Bibliography
Classification msc 81Q60
Classification msc 03G12
Classification msc 81R50
Classification msc 81T70
Classification msc 47C15
Classification msc 46L35
Classification msc 46L10
Classification msc 46L05
Classification msc 81T60
Classification msc 81T05