topic on the algebraic foundations of quantum algebraic topology


0.1 Topic entry on the algebraic foundations of Quantum Algebraic Topology.

(a). Quantum Algebraic Topology (QAT) is defined as the mathematical and physical study of general theories of quantum algebraic structuresPlanetmathPlanetmath from the standpoint of Algebraic Topology, Category TheoryMathworldPlanetmathPlanetmathPlanetmathPlanetmath and their Non-AbelianMathworldPlanetmathPlanetmath extensionsPlanetmathPlanetmathPlanetmath in Higher Dimensional AlgebraPlanetmathPlanetmath and SupercategoriesPlanetmathPlanetmath

(b). Several suggested new QAT topics are:

  1. 1.

    Poisson algebras, Quantization methods and Hamiltonian algebroids

  2. 2.

    K-S Theorem and its Quantum algebraic consequences in QAT

  3. 3.

    Logic Lattice algebras or Many-Valued (MV) Logic algebras

  4. 4.

    Quantum MV-Logic algebrasMathworldPlanetmathPlanetmath and Ł-Mn-noncommutative lattice algebras

  5. 5.

    Quantum Operator AlgebrasPlanetmathPlanetmathPlanetmath ( such as : involutionPlanetmathPlanetmath, *-algebras, or *-algebras, von Neumann algebrasMathworldPlanetmathPlanetmathPlanetmath, , JB- and JL- algebras, C* - or C*- algebras,

  6. 6.

    Quantum von Neumann algebra and subfactors

  7. 7.

    Kac-Moody and K-algebras

  8. 8.

    Hopf algebrasPlanetmathPlanetmath, Quantum GroupsPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath and Quantum group algebras

  9. 9.

    Quantum GroupoidsPlanetmathPlanetmath and weak Hopf C*-algebras

  10. 10.

    GroupoidPlanetmathPlanetmathPlanetmathPlanetmath C*-Convolution algebras and *-Convolution Algebroids

  11. 11.

    Quantum Spacetimes and Quantum Fundamental Groupoids

  12. 12.

    Quantum Double Algebras

  13. 13.

    Quantum Gravity, supersymmetries, supergravity, superalgebras and graded ‘Lie’ algebras

  14. 14.

    Quantum Categorical algebra and Higher Dimensional, Ł-Mn- Toposes

  15. 15.

    Quantum R-categories, R-supercategories and Symmetry Breaking

  16. 16.

    Extended Quantum Symmetries in Higher Dimensional Algebras (HDA), such as:
    algebroids, double algebroids, categorical algebroids, double groupoidsPlanetmathPlanetmathPlanetmath,
    convolution algebroids, groupoid C* -convolution algebroids

  17. 17.

    Universal algebras in R-Supercategories

  18. 18.

    Supercategorical algebras (SA) as concrete interpretationsMathworldPlanetmathPlanetmath of the Theory of Elementary Abstract Supercategories (ETAS).

  19. 19.

    Quantum Non-Abelian Algebraic Topology (QNAAT)

  20. 20.
  21. 21.

    Other – Miscellaneous [please add here your additions, changes, editing, remarks, proofs, conjectures, and so on…]

References

  • 1 Alfsen, E.M. and F. W. Schultz: Geometry of State SpacesMathworldPlanetmath of Operator Algebras, Birkäuser, Boston–Basel–Berlin (2003).
  • 2 Atyiah, M.F. 1956. On the Krull-Schmidt theorem with applications to sheaves. Bull. Soc. Math. France, 84: 307–317.
  • 3 Auslander, M. 1965. Coherent Functors. Proc. Conf. Cat. Algebra, La Jolla, 189–231.
  • 4 Awodey, S. & Butz, C., 2000, Topological Completeness for Higher Order Logic., Journal of Symbolic Logic, 65, 3, 1168–1182.
  • 5 Awodey, S., 1996, ”Structure in Mathematics and Logic: A Categorical Perspective”, Philosophia Mathematica, 3, 209–237.
  • 6 Awodey, S., 2004, ”An Answer to Hellman’s Question: Does Category Theory Provide a Framework for Mathematical Structuralism”, Philosophia Mathematica, 12, 54–64.
  • 7 Awodey, S., 2006, Category Theory, Oxford: Clarendon Press.
  • 8 Baez, J. & Dolan, J., 1998a, ”Higher-Dimensional Algebra III. n-Categories and the Algebra of Opetopes”, Advances in Mathematics, 135, 145–206.
  • 9 Baez, J. & Dolan, J., 2001, ”From Finite SetsMathworldPlanetmath to Feynman Diagrams”, Mathematics Unlimited – 2001 and Beyond, Berlin: Springer, 29–50.
  • 10 Baez, J., 1997, ”An Introduction to n-Categories”, Category Theory and Computer Science, Lecture Notes in Computer Science, 1290, Berlin: Springer-Verlag, 1–33.
  • 11 Baianu, I.C.: 1970, Organismic SupercategoriesPlanetmathPlanetmath: II. On Multistable Systems. Bulletin of Mathematical Biophysics, 32: 539-561.
  • 12 Baianu, I.C.: 1971b, CategoriesMathworldPlanetmath, FunctorsMathworldPlanetmath and Quantum Algebraic Computations, in P. Suppes (ed.), Proceed. Fourth Intl. Congress Logic-Mathematics-Philosophy of Science, September 1–4, 1971, Bucharest.
  • 13 Baianu, I.C. and D. Scripcariu: 1973, On Adjoint Dynamical Systems. Bulletin of Mathematical Biophysics, 35(4), 475–486.
  • 14 Baianu, I.C.: 1973, Some Algebraic Properties of (M,R) – Systems. Bulletin of Mathematical Biophysics 35, 213-217.
  • 15 Baianu, I.C.: 1977, A Logical Model of Genetic Activities in Łukasiewicz Algebras: The Non-linear Theory. Bulletin of Mathematical Biology, 39: 249-258.
  • 16 Baianu, I. C., Glazebrook, J. F. and G. Georgescu: 2004, Categories of Quantum Automata and N-Valued Łukasiewicz Algebras in RelationMathworldPlanetmathPlanetmathPlanetmath to Dynamic Bionetworks, (M,R)–Systems and Their Higher Dimensional Algebra, Abstract and Preprint of Report: http://www.ag.uiuc.edu/fs401/QAuto.pdf and http://www.medicalupapers.com/quantum+automata+math+categories+baianu/
  • 17 Baianu, I.C., R. Brown and J.F. Glazebrook. : 2007a, Categorical Ontology of Complex Spacetime Structures: The Emergence of Life and Human Consciousness, Axiomathes, 17: 35-168.
  • 18 Baianu, I.C., R. Brown and J. F. Glazebrook: 2007b, A Non-Abelian, Categorical Ontology of Spacetimes and Quantum Gravity, Axiomathes, 17: 169-225.
  • 19 Barr, M. and Wells, C., 1985, Toposes, Triples and Theories, New York: Springer-Verlag.
  • 20 Barr, M. and Wells, C., 1999, Category Theory for Computing Science, Montreal: CRM.
  • 21 Bell, J. L., 1981, ”Category Theory and the Foundations of Mathematics”, British Journal for the Philosophy of Science, 32, 349–358.
  • 22 Bell, J. L., 1982, ”Categories, Toposes and Sets”, Synthese, 51, 3, 293–337.
  • 23 Bell, J. L., 1986, ”From Absolute to Local Mathematics”, Synthese, 69, 3, 409–426.
  • 24 Bell, J. L., 1988, Toposes and Local Set TheoriesMathworldPlanetmath: An Introduction, Oxford: Oxford University Press.
  • 25 Birkoff, G. & Mac Lane, S., 1999, Algebra, 3rd ed., Providence: AMS.
  • 26 Borceux, F.: 1994, Handbook of Categorical Algebra, vols: 1–3, in Encyclopedia of Mathematics and its Applications 50 to 52, Cambridge University Press.
  • 27 Bourbaki, N. 1961 and 1964: Algèbre commutativePlanetmathPlanetmathPlanetmath., in Èléments de Mathématique., Chs. 1–6., Hermann: Paris.
  • 28 BJk4) Brown, R. and G. Janelidze: 2004, Galois theory and a new homotopy double groupoidPlanetmathPlanetmath of a map of spaces, Applied Categorical Structures 12: 63-80.
  • 29 Brown, R., Higgins, P. J. and R. Sivera,: 2007a, Non-Abelian Algebraic Topology, in preparation.
    http://www.bangor.ac.uk/ mas010/nonab-a-t.html ;
    http://www.bangor.ac.uk/ mas010/nonab-t/partI010604.pdf
  • 30 Brown, R., Glazebrook, J. F. and I.C. Baianu.: 2007b, A Conceptual, Categorical and Higher Dimensional Algebra Framework of UniversalPlanetmathPlanetmathPlanetmath Ontology and the Theory of Levels for Highly Complex Structures and Dynamics., Axiomathes (17): 321–379.
  • 31 Brown, R., Hardie, K., Kamps, H. and T. Porter: 2002, The homotopy double groupoid of a Hausdorff space., Theory and Applications of Categories 10, 71-93.
  • 32 Brown, R., and Hardy, J.P.L.:1976, Topological groupoidsPlanetmathPlanetmathPlanetmathPlanetmath I: universal constructions, Math. Nachr., 71: 273-286.
  • 33 Brown, R. and Spencer, C.B.: 1976, Double groupoids and crossed modules, Cah. Top. Géom. Diff. 17, 343-362.
  • 34 Brown R and Razak Salleh A (1999) Free crossed resolutions of groups and presentationsMathworldPlanetmathPlanetmath of modules of identitiesPlanetmathPlanetmathPlanetmathPlanetmath among relations. LMS J. Comput. Math., 2: 25–61.
  • 35 Buchsbaum, D. A.: 1955, Exact categories and duality., Trans. Amer. Math. Soc. 80: 1-34.
  • 36 Buchsbaum, D. A.: 1969, A note on homologyMathworldPlanetmathPlanetmath in categories., Ann. of Math. 69: 66-74.
  • 37 Bunge, M. and S. Lack: 2003, Van Kampen theorems for toposes, Adv. in Math. 179, 291-317.
  • 38 Bunge, M., 1984, ”Toposes in Logic and Logic in Toposes”, Topoi, 3, no. 1, 13-22.
  • 39 Bunge M, Lack S (2003) Van Kampen theorems for toposes. Adv Math, 179: 291-317.
  • 40 Cartan, H. and Eilenberg, S. 1956. Homological Algebra, Princeton Univ. Press: Pinceton.
  • 41 Cohen, P.M. 1965. Universal Algebra, Harper and Row: New York, London and Tokyo.
  • 42 Connes A 1994. Noncommutative geometry. Academic Press: New York.
  • 43 Croisot, R. and Lesieur, L. 1963. Algèbre noethérienne non-commutative., Gauthier-Villard: Paris.
  • 44 Baianu, I. C. et al. 2008. Quantum Non-Abelian Algebraic Topology (QNAAT): PM Exposition lec id=68.

[This is an entry-in-progress for a new topic entry on the Algebraic Foundations of Quantum Algebraic Topology.]

Title topic on the algebraic foundations of quantum algebraic topology
Canonical name TopicOnTheAlgebraicFoundationsOfQuantumAlgebraicTopology
Date of creation 2013-03-22 18:14:21
Last modified on 2013-03-22 18:14:21
Owner bci1 (20947)
Last modified by bci1 (20947)
Numerical id 34
Author bci1 (20947)
Entry type Topic
Classification msc 08A99
Classification msc 08A70
Classification msc 18E05
Classification msc 18-00
Classification msc 55U40
Classification msc 55-02
Classification msc 81Q60
Classification msc 08A05
Classification msc 81R15
Synonym Algebraic Foundations of Quantum Algebraic Topology topic
Related topic QuantumAlgebraicTopology
Related topic NonAbelianTheories
Related topic GrassmanHopfAlgebrasAndTheirDualCoAlgebras