index of set theory


1 Basic Notions

  1. 1.
  2. 2.

    set

  3. 3.

    subset

  4. 4.

    union

  5. 5.
  6. 6.
  7. 7.
  8. 8.

    criterion for a set to be transitiveMathworldPlanetmathPlanetmath

  9. 9.
  10. 10.

    proof of the associativity of the symmetric difference operator

  11. 11.
  12. 12.

    an example of mathematical induction

  13. 13.
  14. 14.

    principle of finite induction proven from the well-ordering principle for natural numbers

  15. 15.

    de Morgan’s laws

  16. 16.

    de Morgan’s laws for sets (proof)

2 Functions and Relations

2.1 Order Relations

  1. 1.

    poset

  2. 2.
  3. 3.

    minimal element

  4. 4.
  5. 5.
  6. 6.

    another definition of cofinality

  7. 7.

    chain

  8. 8.
  9. 9.

    branch

  10. 10.

    tree (set theoretic)

  11. 11.

    example of tree (set theoretic)

  12. 12.

    proof that Ω has the tree property

  13. 13.
  14. 14.

3 Cardinals and Ordinals

  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.

    another proof of cardinality of the rationals

  7. 7.
  8. 8.

    Cantor normal formMathworldPlanetmath

  9. 9.

    Cantor’s diagonal argument

  10. 10.

    Cantor’s theoremMathworldPlanetmath

  11. 11.
  12. 12.
  13. 13.
  14. 14.
  15. 15.

    cardinality

  16. 16.

    cardinality of a countableMathworldPlanetmath union

  17. 17.
  18. 18.

    cardinality of the continuumMathworldPlanetmathPlanetmath

  19. 19.

    cardinality of the rationals

  20. 20.
  21. 21.

    club

  22. 22.
  23. 23.

    countable

  24. 24.
  25. 25.

    finite

  26. 26.
  27. 27.
  28. 28.

    Fodor’s lemma

  29. 29.

    Hilbert’s hotel

  30. 30.

    if A is infiniteMathworldPlanetmath and B is a finite subset of A, then AB is infinite

  31. 31.

    König’s theorem

  32. 32.
  33. 33.
  34. 34.

    normal (ordinalMathworldPlanetmathPlanetmath) function

  35. 35.

    open and closed intervals have the same cardinality

  36. 36.
  37. 37.
  38. 38.
  39. 39.
  40. 40.

    another proof of pigeonhole principle

  41. 41.

    proof of Cantor’s theorem

  42. 42.
  43. 43.

    proof of Fodor’s lemma

  44. 44.
  45. 45.
  46. 46.
  47. 47.

    proof that the rationals are countable

  48. 48.
  49. 49.

    Schroeder-Bernstein theorem

  50. 50.
  51. 51.
  52. 52.

    thin set

  53. 53.
  54. 54.
  55. 55.

    the Cartesian product of a finite number of countable sets is countable

  56. 56.
  57. 57.
  58. 58.

    Aronszajn tree

  59. 59.

    example of Aronszajn tree

  60. 60.
  61. 61.

    Erdős-Rado theorem

  62. 62.

    uncountable owned by yark

  63. 63.
  64. 64.
  65. 65.
  66. 66.
  67. 67.
  68. 68.

    weakly compact cardinals and the tree property

  69. 69.
  70. 70.

4 Axiomatic Formulation

  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
  9. 9.
  10. 10.
  11. 11.
  12. 12.

    equivalence of Zorn’s lemma and the axiom of choice

  13. 13.
  14. 14.

    Kuratowski’s lemma

  15. 15.
  16. 16.
  17. 17.

    Tukey’s lemma

  18. 18.

    𝒰-small

  19. 19.

    proof of Tukey’s lemma

  20. 20.

    proof of Zermelo’s postulateMathworldPlanetmath

  21. 21.

    proof of Zermelo’s well-ordering theorem

  22. 22.

    proof that a relation is union of functions if and only if AC

  23. 23.
  24. 24.
  25. 25.

    well-ordering principle for natural numbers proven from the principle of finite induction

  26. 26.
  27. 27.

    Martin’s axiom

  28. 28.

    Martin’s axiom and the continuum hypothesis

  29. 29.

    Martin’s axiom is consistent

  30. 30.

    a shorter proof: Martin’s axiom and the continuum hypothesis

  31. 31.

    Zermelo’s postulate

  32. 32.

    Zermelo’s well-ordering theorem

  33. 33.

    Zorn’s lemma

  34. 34.

    example of universePlanetmathPlanetmath

  35. 35.

    example of universe of finite setsMathworldPlanetmath

  36. 36.
  37. 37.

    Tarski’s axiom

  38. 38.

    universe

  39. 39.

    von Neumann-Bernays-Goedel set theory

  40. 40.
  41. 41.
  42. 42.
  43. 43.
  44. 44.
  45. 45.
  46. 46.

    forcings are equivalentMathworldPlanetmathPlanetmathPlanetmath if one is dense in the other

  47. 47.
  48. 48.
  49. 49.
  50. 50.
  51. 51.
  52. 52.
  53. 53.
  54. 54.
  55. 55.
  56. 56.
  57. 57.

    is equivalent to and continuum hypothesis

  58. 58.

    proof of is equivalent to and continuum hypothesis

  59. 59.
  60. 60.
  61. 61.
Title index of set theory
Canonical name IndexOfSetTheory
Date of creation 2013-03-22 16:40:32
Last modified on 2013-03-22 16:40:32
Owner rspuzio (6075)
Last modified by rspuzio (6075)
Numerical id 20
Author rspuzio (6075)
Entry type Definition
Classification msc 03E30