index of set theory
1 Basic Notions
- 1.
-
2.
set
-
3.
subset
-
4.
union
- 5.
- 6.
- 7.
-
8.
criterion for a set to be transitive
- 9.
-
10.
proof of the associativity of the symmetric difference operator
- 11.
-
12.
an example of mathematical induction
- 13.
-
14.
principle of finite induction proven from the well-ordering principle for natural numbers
-
15.
de Morgan’s laws
-
16.
de Morgan’s laws for sets (proof)
2 Functions and Relations
-
1.
antisymmetric
-
2.
example of antisymmetric
- 3.
- 4.
- 5.
- 6.
-
7.
domain
-
8.
fibre
-
9.
fix (transformation action)
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
-
21.
mapping of period is a bijection
- 22.
- 23.
- 24.
- 25.
- 26.
-
27.
properties of a function
- 28.
-
29.
quasi-inverse of a function
-
30.
range
- 31.
- 32.
-
33.
restriction of a function
- 34.
- 35.
- 36.
- 37.
-
38.
transformation
-
39.
transitive
- 40.
- 41.
- 42.
- 43.
2.1 Order Relations
-
1.
poset
- 2.
-
3.
minimal element
- 4.
- 5.
-
6.
another definition of cofinality
-
7.
chain
- 8.
-
9.
branch
-
10.
tree (set theoretic)
-
11.
example of tree (set theoretic)
-
12.
proof that has the tree property
- 13.
-
14.
well ordered set
3 Cardinals and Ordinals
- 1.
- 2.
- 3.
- 4.
-
5.
all algebraic numbers in a sequence
-
6.
another proof of cardinality of the rationals
- 7.
-
8.
Cantor normal form
-
9.
Cantor’s diagonal argument
-
10.
Cantor’s theorem
- 11.
- 12.
- 13.
- 14.
-
15.
cardinality
-
16.
cardinality of a countable union
- 17.
-
18.
cardinality of the continuum
-
19.
cardinality of the rationals
- 20.
-
21.
club
- 22.
-
23.
countable
- 24.
-
25.
finite
- 26.
- 27.
-
28.
Fodor’s lemma
-
29.
Hilbert’s hotel
-
30.
if is infinite and is a finite subset of then is infinite
-
31.
König’s theorem
- 32.
- 33.
-
34.
normal (ordinal) function
-
35.
open and closed intervals have the same cardinality
- 36.
- 37.
- 38.
- 39.
-
40.
another proof of pigeonhole principle
-
41.
proof of Cantor’s theorem
- 42.
-
43.
proof of Fodor’s lemma
-
44.
proof of the existence of transcendental numbers
- 45.
- 46.
-
47.
proof that the rationals are countable
-
48.
proof of Schroeder-Bernstein theorem
-
49.
Schroeder-Bernstein theorem
- 50.
- 51.
-
52.
thin set
- 53.
- 54.
-
55.
the Cartesian product of a finite number of countable sets is countable
- 56.
- 57.
-
58.
Aronszajn tree
-
59.
example of Aronszajn tree
- 60.
-
61.
Erdős-Rado theorem
-
62.
uncountable owned by yark
- 63.
- 64.
- 65.
- 66.
- 67.
-
68.
weakly compact cardinals and the tree property
- 69.
- 70.
4 Axiomatic Formulation
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
-
12.
equivalence of Zorn’s lemma and the axiom of choice
- 13.
-
14.
Kuratowski’s lemma
- 15.
- 16.
-
17.
Tukey’s lemma
-
18.
-small
-
19.
proof of Tukey’s lemma
-
20.
proof of Zermelo’s postulate
-
21.
proof of Zermelo’s well-ordering theorem
-
22.
proof that a relation is union of functions if and only if AC
- 23.
- 24.
-
25.
well-ordering principle for natural numbers proven from the principle of finite induction
- 26.
-
27.
Martin’s axiom
-
28.
Martin’s axiom and the continuum hypothesis
-
29.
Martin’s axiom is consistent
-
30.
a shorter proof: Martin’s axiom and the continuum hypothesis
-
31.
Zermelo’s postulate
-
32.
Zermelo’s well-ordering theorem
-
33.
Zorn’s lemma
-
34.
example of universe
-
35.
example of universe of finite sets
- 36.
-
37.
Tarski’s axiom
-
38.
universe
-
39.
von Neumann-Bernays-Goedel set theory
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
-
46.
forcings are equivalent if one is dense in the other
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
-
57.
is equivalent to and continuum hypothesis
-
58.
proof of is equivalent to and continuum hypothesis
- 59.
- 60.
- 61.
Title | index of set theory |
---|---|
Canonical name | IndexOfSetTheory |
Date of creation | 2013-03-22 16:40:32 |
Last modified on | 2013-03-22 16:40:32 |
Owner | rspuzio (6075) |
Last modified by | rspuzio (6075) |
Numerical id | 20 |
Author | rspuzio (6075) |
Entry type | Definition |
Classification | msc 03E30 |